Как проверить и подключить дроссель для ламп дневного света
Содержание:
Принцип работы люминесцентного светильника
Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.
Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).
Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.
Watch this video on YouTube
Для чего нужен дроссель
Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:
- формирование напряжения запуска;
- ограничение тока через электроды.
Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.
Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.
В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.
Отличия дросселя от ЭПРА
Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.
В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:
- длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
- большие искажения формы напряжения питающей сети (cosф<0.5);
- мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
- большие массо-габаритные характеристики;
- низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
- низкая надежность запуска при отрицательных температурах.
Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.
Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.
Watch this video on YouTube
Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:
- с предварительным подогревом электродов;
- с холодным запуском.
В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.
Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).
Схемы с электронным дросселем имеют такие преимущества:
полное отсутствие мерцания;
широкий температурный диапазон использования;
малые искажения формы напряжения сети;
отсутствие акустических шумов;
увеличение срока службы источников освещения;
малые габариты и вес, возможность миниатюрного исполнения;
возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов.
Для чего нужен дроссель
Технические характеристики
Характеристики энергосберегающей лампы предполагают наличие балласта, поглощающего лишнюю мощность в электроцепи. В лампе мощностью 36-40 Вт дроссель забирает около 6 Вт (15%).
Электромагнитные дроссели для ламп люминесцентного типа
Основные функции дросселя:
- подогрев катодов для их подготовки к эмиссии электронов;
- создание напряжения, необходимого для стартового разряда;
- ограничение тока, протекающего по электрической схеме после старта.
В цепи переменного тока дроссель обеспечивает сдвиг фаз между током и напряжением. Величина отставания тока от напряжения, которую вызывает дроссель, указана в его маркировке (cos ϕ). Данная характеристика имеет еще одно название – коэффициент мощности.
Активная мощность определяется по формуле:
P = U х I х cos ϕ, где
U – напряжение,
I – сила тока.
При низком коэффициенте мощности растет потребление реактивной энергии.
Дроссели классифицируются по уровню мощности и шума.
По уровню мощности дроссели делятся на три класса:
- С – с низким уровнем;
- В – с супернизким;
- D – со средним уровнем поглощения.
Различаются дроссели и по уровню шума:
- С – очень низкий;
- А – особо низкий;
- П – пониженный;
- Н – нормальный.
Принцип работы
Устройство в лампе работает в паре со стартером по такому принципу:
- при подаче напряжения на лампу ток попадает на стартер – элемент, состоящий из баллона и конденсатора (в баллоне, заполненном инертным газом, размещены контакты из биметалла);
- под воздействием напряжения происходит ионизация газа, и ток протекает по цепи дросселя. Газ и контакты разогреваются, что приводит к увеличению силы тока до 0,5 А. Следом разогреваются и катоды и освобождаются электроны. Они, в свою очередь, способствуют разогреву ртутных паров, помещенных в трубку лампы;
- как только контакты замыкаются, завершается ионизация. Температура стартера падает, контакты размыкаются.
Наглядное представление работы дросселя
Как выбрать нужный вид
Выбрать дроссель к люминесцентной лампе, в первую очередь обращайте внимание на его мощность: она должна совпадать с мощностью светильника. Немаловажную роль при выборе играет и производитель: лучше, если это будет известная компания, продукция которой широко применяется
Покупая дешевые изделия неизвестных изготовителей, вы рискуете напрасно выбросить деньги
Немаловажную роль при выборе играет и производитель: лучше, если это будет известная компания, продукция которой широко применяется. Покупая дешевые изделия неизвестных изготовителей, вы рискуете напрасно выбросить деньги.
Еще один вопрос, требующий решения: какой дроссель вы хотите купить – электронный или электромагнитный. Цены на них заметно отличаются.
Cтоимость электромагнитного дросселя в зависимости от мощности начинается примерно со 150 рублей (импортный вариант), а
минимальная цена на электронный дроссель составляет около 500 рублей.
Рекомендуем Вам также более подробно ознакомиться с мощностью люминесцентных ламп.
Основные неполадки и способы их устранения
Средний эксплуатационный срок у подобных приспособлений составляет около 3 лет, но во многом он зависит от правильности подключения и использования, а также от качества приобретенной продукции и отсутствия в ней производственного брака.
Иногда возникают поломки данной детали, наиболее распространенными неисправностями являются следующие:
- Зажигание лампы не осуществляется, отсутствует даже свечение на концах. Основными причинами являются разрывы в кабеле, нарушение контактов или изначально неправильное подключение схемы. Если в ходе проверок ничего из перечисленного выявлено не было, то причина заключается именно в неисправности дросселя.
- Нарушение изоляции дросселя или возникновение межвитковых замыканий в его обмотке, что обычно приводит к фактически моментальному перегоранию электродов спирали лампы после ее включения. Такие же последствия может иметь и наличие в схеме замыканий на корпус, поэтому первоначально требуется установить точную причину неполадок.
- Почернение концов лампы через некоторое время после ее включения. Также может быть вызвано замыканием на корпус светильника, поэтому предварительно необходимо при помощи мультиметра или тестера замерить величину электрического тока как в момент запуска схемы, так и во время ее функционирования. Если показатели значительно превосходят допустимые значения, то причины неисправностей именно в дросселе.
- Появление в лампе спиральных или змеевидных перемещающихся полос, которое обусловлено хаотичным движением разрядного шнура после запуска схемы. Если замена лампы, а также проверка внутрисетевого уровня напряжения и исправности контактов не помогли исправить ситуацию, то это свидетельствует о поломке дросселя.
Если были выявлены неисправности данного приспособления, то пытаться его починить не стоит, учитывая сложность этого процесса. Требуется заменить деталь, чтобы обеспечить правильное функционирование системы освещения.
Схемы подключения дросселя и газоразрядных ламп
Если вы не знаете, как подключить лампу ДНаТ, но хотите это сделать самостоятельно, то изучите информацию ниже. В первую очередь вам нужно подготовить дроссель, ИЗУ, желательно конденсатор и само осветительное устройство. Затем попытайтесь найти схему подключения, которая обычно изображена на корпусе балласта или зажигающего прибора.
Чтобы запустить ДНаТ, подведите к балласту фазу, потом пустите ее на зажигающее устройство, а потом подключите источник света. После этого можно проверить работоспособность лампы.
Как упоминалось ранее, схема подключения ДНаТ с применением ИЗУ с двумя и тремя выводами отличается. Первые лучше использовать для маломощных лампочек, для запуска которых достаточно импульса до 2 киловольт.
С трехконтактным ИЗУ
Комплект для ДНаТ можно собрать в компактном щитке или встроить в корпус осветительного прибора, если его габариты позволяют.
Схема подключения с сайта lampa.dn.ua
Подключение газоразрядных светильников проводиться по такому плану:
Внимание. В первую очередь проверьте изоляцию дросселя и конденсатора с помощью тестера
Для этого переключите прибор в режим максимального сопротивления. Это поможет узнать, не проходит ли напряжение на корпус.
- Найдите 2 провода с отрицательным зарядом, которые выходят из автомата. Одну жилу проведите к лампе, а вторую – к соответствующему выходу на дросселе, который имеет маркировку «N». Устанавливайте балласт только в разрыв фазного кабеля (не нулевого), который идет к лампе.
- Потом расключите фазу. Одну жилу, идущую с автомата, вставьте в контакт дросселя, а потом подключите его к клемме ИЗУ с маркировкой «В».
- Вставьте провод в вывод зажигающего устройства, обозначенный «Lp» и проведите его к патрону лампы.
После этого можно проверить работоспособность ДНаТ.
С двухконтактным ИЗУ
Зажигающие устройства с двумя выводами подключаются параллельно источнику света. То есть, после дросселя нужно завести фазный провод в однотипный выход ИЗУ, а к другой клемме подключают жилу с отрицательным зарядом
При этом не важно откуда она выходит, ее можно провести даже от патрона
Схема подключения с сайта lampa.dn.ua
Конденсаторное устройство подключите параллельно все цепи. Для этого просто один кабель соедините с фазой автомата, а второй с нулем. Потом протяните провод и разведите его концы на патрон.
Как работает люминесцентный светильник
В момент подключения схемы к электрической цепи все напряжение подается на . В нормальном положении электроды находятся в разомкнутом положении. На электродах стартера начинает возникать тлеющий разряд. По цепи проходит ток небольшой величины (30-50 мА).
Этого тока достаточно для нагрева электродов. При достижении определенной температуры они начинают изгибаться и замыкают цепь. После того как контакты замкнуться тлеющий разряд прекращается.
Давайте по ходу рассмотрим из каких основных деталей состоит сам светильник.
При замыкании цепи (через электроды стартера) по ней начинает проходить ток, величина которого в 1,5 раза больше от номинального тока лампы. Величина тока ограничивается сопротивлением дросселя. Электроды лампы и стартера не могут выполнять эту функцию, так как первые имеют недостаточное сопротивление, а вторые находятся в замкнутом положении.
Нагрев электродов до 8000С происходит в течение 1-2 секунд. В результате повышения температуры происходит увеличение электронной эмиссии, что способствует упрощению процесса пробоя газового промежутка. Разряд в электродах стартера отсутствует и они постепенно остывают.
После остывания стартера электроды размыкаются, принимая исходное положение, и разрывают цепь. Разрыв цепи сопровождается появлением в дросселе ЭДС самоиндукции. Ее величина прямо пропорциональна индуктивности дросселя и скорости изменения величины тока при разрыве цепи.
Возникновение ЭДС самоиндукции является причиной создания повышенного напряжение
величиной 800-1000 В, которое в виде импульса подается на лампу. Ее электроды предварительно разогреты и она готова к зажиганию. В этот момент происходит пробой и начинается свечение.
На стартер который подключен параллельно лампе теперь прикладывается напряжение, величина которого в два раза ниже напряжения сети. Оно не способно пробить неоновую лампочку, следовательно, ее зажигание больше не осуществляется. Весь цикл зажигания длится не более 10 секунд.
Как проверить стартер люминесцентной лампы
Данный вопрос очень часто возникает перед специалистами в процессе ремонта люминесцентных светильников. Хоть деталь и мелкая, но способна вызвать серьезные проблемы.
Выявить поломку стартера можно заменой его на исправный, если таковой имеется под рукой. А вот что делать в случаях, когда по близости больше нет светильников, а до ближайшего специализированного магазина не один километр пути? Как проверить стартер люминесцентной лампы
в домашних условиях? Проверить работоспособность данного устройства можно по стандартной схеме.
Последовательно со стартером в сеть подключается обыкновенная лампа с нитью накаливания. Желательно, чтобы ее мощность не превышала 40 Вт.
Собрать такую схему не составит труда. Если стартер находится в исправном состоянии, то лампа будет гореть и периодически на мгновение гаснуть. Этот процесс будет сопровождаться характерными щелчками, которые свидетельствуют о работе контактов. Если лампочка не горит или светится постоянно (без моргания), то можно констатировать поломку стартера.
Таким вот нехитрым способом можно проверить стартер для люминесцентных ламп
. Хотя, по правде сказать, я еще не видел, чтобы на производстве их где либо проверяли. Это наверное связано с их незначительной стоимостью. Обычно бывает как, если лампа не работает или начинает мигать просто меняют стартер на новый, получилось устранить причину хорошо, нет значить проблема в другом.
Почему мигает люминесцентная лампа
Дорогие друзья Вы наверное замечали что светильники с люминесцентными лампами со временем начинают мигать. И связано это не с использованием выключателей с подсветкой которые являются причиной мигания энергосберегающих лампах .
В процессе эксплуатации светильников рабочее напряжение зажигания тлеющего разряда в стартере падает. Это является причиной того, что стартер будет срабатывать даже при горящей лампе. После размыкания электродов свечение восстанавливается. Человеческий глаз воспринимает это как процесс мигания. Подобное явление является причиной порчи лампы и выхода из строя дросселя в результате его перегрева.
Поэтому если вы замечаете постоянное мигание лампы
необходимо заменить стартер на новый
. В 90 % случаев именно он является причиной такого феномена.
При возникновении мигания необходимо как можно раньше произвести замену стартера, так как в таком режиме работы ресурс составляющих светильника уменьшатся и из строя могут выйти уже колба или дроссель.
Люминесцентные лампы сейчас на пике популярности. Их используют в больницах, школах, детских садах и прочих общественных учреждениях. У люминесцентных ламп масса преимуществ перед обычными лампами:
Как проверить исправность
Принцип проверки ограничителя достаточно прост. Все, что нужно сделать, это достать его из люминесцентной лампы и проверить сопротивление дросселя при помощи тестера либо мультиметра.У ограничителя, находящегося в исправном состоянии, сопротивление на тестере покажет определенное постоянное значение. Если ограничитель все же неисправен, то тестер покажет значение, которое будет значительно отличаться от нормальных показателей, выходить за норму.Таким образом, сбой в работе дросселя может быть обусловлен обрывом либо перегоранием окантовки, а также может произойти ввиду того, что нарушена изоляция между витками провода.
Причиной сбоя может служить обрыв либо перегорание окантовки, если значение напряжения на тестере будет бесконечно высоким. О перегорании также свидетельствует неприятный запах, который особенно ощутим во время включенной лампы.Если же значение напряжение на тестере слишком низкое, то в данном случае подозрение о нарушении изоляции провода полностью находит свое подтверждение.
Принцип работы люминесцентного светильника
Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.
Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).
Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.
Для чего нужен дроссель
Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:
- формирование напряжения запуска;
- ограничение тока через электроды.
Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.
Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.
В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.
Отличия дросселя от ЭПРА
Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.
В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:
- длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
- большие искажения формы напряжения питающей сети (cosф
- мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
- большие массо-габаритные характеристики;
- низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
- низкая надежность запуска при отрицательных температурах.
Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.
Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.
Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:
- с предварительным подогревом электродов;
- с холодным запуском.
В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.
Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).
Схемы с электронным дросселем имеют такие преимущества:
полное отсутствие мерцания;
широкий температурный диапазон использования;
малые искажения формы напряжения сети;
отсутствие акустических шумов;
увеличение срока службы источников освещения;
малые габариты и вес, возможность миниатюрного исполнения;
возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов.
Основные характеристики
В последнее время ДНаТ часто применяют для замены ДРЛ и других типов ламп в виду совершенствования конструкции и повышения их технических параметров, требования к которым были установлены ГОСТом Р 53073-2008.
Наиболее актуальными характеристиками для них являются:
- допустимый температурный режим – от – 30°С до +50°С, для районов с особо агрессивной средой можно встретить модели ДНаТ и с большим температурным пределом.
- КПД лампы составляет около 30%;
- потребляемая мощность составляет от 30 Вт до 1кВт, обозначается цифрами в маркировке лампы после букв ДНаТ;
- срок эксплуатации колеблется в пределах от 6 000 до 25 000 часов;
- способны выдавать поток в пределах от 3500 до 130 000 Лм, в зависимости от модели лампы;
- эффективность ДНаТ находиться в пределах от 80 до 130 Лм/Вт, что приближает их к светодиодным светильникам;
- спектр излучения находиться в районе 2000 К, а коэффициент цветопередачи Ra составляет всего 20 – 30.
В таблице ниже приведены параметры ламп ДНаТ с разной мощностью:
Таблица: параметры некоторых моделей ламп ДНаТ
Модель | Р, Вт | U на лампе, В | Световой поток, лм | Цоколь | Длина | Диаметр | Изготовитель |
ДНаТ-50ц | 50 | 100 | 3700 | Е27 | 165 | 42 | Россия |
ДНаТ-70ц | 70 | 100 | 6000 | Е27 | 165 | 42 | Россия |
ДНаТ-100эл | 100 | 120 | 8000 | Е27 | 175 | 76 | Россия |
ДНаТ-100ц | 100 | 120 | 9800 | Е27 | 165 | 42 | Россия |
ДНаТ-100ц | 100 | 120 | 9000 | Е40 | 211 | 42 | Россия |
ДНаТ-150 | 150 | 120 | 15000 | Е40 | 211 | 48 | Россия |
ДНаТ-250 | 250 | 120 | 26000 | Е40 | 250 | 48 | Россия |
ДНаТ-400 | 400 | 120 | 45000 | Е40 | 278 | 48 | Россия |
ДНаТ-1000 | 1000 | 120 | 130000 | Е40 | 390 | 66 | Россия |
Вышеперечисленные данные ярко выделяют лампы ДНаТ среди остальных световых приборов, поэтому далее мы рассмотрим основные плюсы и минусы в их эксплуатации.