Измерение сопротивления изоляции. методы и приборы

Что это такое мегаомметр

Мегаомметр – прибор, что позволяет определять большие уровни сопротивления напряжения в сети. Основная особенность данного устройства касается того, что в процессе исследования в цепь поддается относительно высокие напряжения.

Существует 2 чаще всего использующихся вида мегаомметров, такие как:

  1. Индукторный. В таких приборах для получения испытательных высоких напряжений используется встроенный электромеханический генератор, который именуется индуктором. В нем применяется постоянное напряжение. Работает данное устройство посредством ручного управления от рукоятки.
  1. Безындукторный. В таких приборах источником постоянного высокого испытательного напряжения является электронный инвектор, оборудованный выпрямителем. Его питание происходит благодаря встроенным в корпус аккумуляторов. Вместо них могут быть применены сменные гальванические элементы.

Индикаторы в индукторных и безындукторных мегаомметров тоже отличаются. В первом случае производители данных устройств используют стрелочные логометры, во втором – магнитоэлектрические приборы или же жидкокристаллические дисплеи.

Работа с мегаомметром

Для работы с устройством необходимо знать, как замерить сопротивление изоляции мегаомметром.

Весь процесс условно можно разделить на 3 этапа.

Подготовительный. Во время этого этапа необходимо убедиться в квалификации исполнителей (к работе с мегаомметром допускаются специалисты с группой электробезопасности не ниже 3), решить другие организационные вопросы, изучить электросхему и отключить электрооборудование, подготовить приборы и защитные средства.

Основной. В рамках этого этапа в целях корректного и безопасного измерения сопротивления изоляции предусмотрен следующий порядок работы с мегаомметром:

  1. Измерение сопротивления изоляции соединительных проводов. Указанное значение не должно превышать ВПИ (верхнего предела измерений) устройства.
  2. Установка предела измерений. При неизвестном значении сопротивления устанавливается наибольший предел.
  3. Проверка объекта на предмет отсутствия напряжения.
  4. Отключение полупроводниковых приборов, конденсаторов, всех деталей с пониженной изоляцией.
  5. Заземление испытуемой электроцепи.
  6. Фиксация показаний прибора спустя минуту измерений.
  7. Произведение отсчета показаний при выполнении измерений объектов с большой емкостью (например, провода большой длины) после стабилизации стрелки.
  8. Снятие накопленного заряда путем заземления по окончанию измерений, но до отсоединения концов мегаомметра.

Заключительный. На этом этапе подготавливается оборудование к подаче напряжения и оформляется документация на выполнение замеров.

Существует способ, как проверить мегаомметр на исправность. К выводам устройства необходимо подключить провода и закоротить выходные концы. Затем требуется подача напряжения, и нужно следить за результатами. Исправный мегаомметр при измерении закороченной цепи показывает результат «0». Далее концы разъединяют и проводят повторные измерения. На экране должно отобразиться значение «∞». Это значение сопротивления изоляции воздушного промежутка между выходными концами прибора. Исходя из значений этих замеров можно сделать заключение о готовности устройства к работе и его исправности.

Цифровой омметр

Цифровой омметр — современный вариант. Вместо аналогового измерительного механизма используются датчики напряжения и тока, отсылающие сигнал на микропроцессор. Тот анализирует данные и выводит результат на жидкокристаллический дисплей.

Преимущества перед аналоговыми:

  • высокая точность показаний;
  • результаты измерений легко читаются (при использовании аналогового омметра приходится вглядываться в шкалу);
  • компактные размеры;
  • дополнительные функции: память, фиксация показаний и пр.

Недостаток цифровых моделей: датчики опрашивают цепь через определенные временные интервалы, потому невозможно отследить изменения измеряемого параметра в режиме реального времени.

Из-за этого профессиональные мастера-электронщики часто отдают предпочтение аналоговым моделям.

В быту применяют не омметры, а мультиметры — многофункциональные приборы для измерения нескольких параметров (сопротивление, напряжение, сила тока, емкость конденсатора и т.д.).

Вопросы и ответы

Какие материалы для данного прибора доступны на сайте АКТАКОМ?

Для этого прибора после его регистрации на сайте АКТАКОМ с указанием серийного номера доступно для загрузки/прочтения:

Как измерить сопротивление изоляции с помощью мегаомметра АМ-2002?
  1. Подключите красный и черный зажимы к разъемам «RX».
  2. Установите переключатель режимов в необходимую позицию «200МΩ/100V», «200МΩ/250V», «200МΩ/500V» или «1000МΩ/1000V».
  3. Подключите зажимы к измеряемой цепи.
  4. Для активизации измерений нажмите кнопку активизации измерения.
Как измерить переменное напряжение с помощью мегаомметра АМ-2002?
  1. Подключите красный зажим к разъему «~U».
  2. Подключите черный зажим к разъему «».
  3. Установите переключатель режимов в позицию «600V~».
  4. Подключите зажимы к измеряемой цепи.
  5. Для активизации измерений нажмите кнопку активизации измерения.
Как использовать «фиксацию питания» в мегаомметре АМ-2002?
В большинстве случаев, переключатель «ВКЛ./Ручной режим» должен находиться в позиции «Ручной режим». Прибор включается нажатием кнопки активизации измерения. Если необходимо чтобы прибор был включен постоянно, установите переключатель «ВКЛ./Ручной режим» в положение «ВКЛ.».
Как измерить сопротивление в диапазоне 200 Ом с помощью мегаомметра АМ-2002?
  1. Подключите красный зажим к разъему «Ω».
  2. Подключите черный зажим к разъему «».
  3. Установите переключатель режимов в позицию «200Ω».
  4. Подключите зажимы к измеряемой цепи.
  5. Для активизации измерений нажмите кнопку активизации измерения.
Какие условия эксплуатации предусмотрены для данного мегаомметра?

Условия эксплуатации:

  1. Питающее напряжение, температура хранения и эксплуатации см. в разделе «Технические характеристики».
  2. Относительная влажность не более 80% при температуре 0…40 °С.
  3. Атмосферное давление от 630 до 795 мм рт. ст.
  4. В помещениях хранения и эксплуатации не должно быть пыли, паров кислот, щелочей, а также газов, вызывающих коррозию.
  5. После пребывания в предельных условиях (хранения, транспортировки) время выдержки прибора в нормальных (эксплуатационных) условиях не менее 2 часов.
  6. Питание: сеть переменного тока напряжением (220 ± 20) В частотой (50 ± 2) Гц
  7. Не допускается закрывать вентиляционные отверстия. Минимальное расстояние 25 мм по сторонам.
  8. Для чистки прибора снаружи используйте слегка смоченную тряпочку. Не пытайтесь чистить прибор внутри. Перед чисткой отключите прибор от сети и включайте только после полного высыхания.
  9. При эксплуатации не допускаются следующие действия, приводящие к отказу от гарантийного обслуживания прибора:
    • Падение и воздействие вибрации на прибор.
    • Измерение сопротивления в цепях, находящихся под напряжением. Для предотвращения повреждения прибора и причинения вреда здоровью перед проведением измерений необходимо отключить питание от тестируемой цепи и разрядить все высоковольтные конденсаторы в цепи.
    • Измерение напряжение используя гнезда для измерения тока.
    • Нажатие кнопки «PRESS TO TEST» (тест) при коротком замыкании на тестируемой линии.
    • Проведение измерений при напряжении питания ниже 80% от указанного номинала на используемых батареях.
    • Замена батареи питания до отключения прибора от сети или нарушение полярности при подключении / замене батареи.
    • Растягивать с усилием измерительные щупы прибора.

    Это может привести к повреждению прибора и частичной или полной потере его работоспособности
    Неисправность предохранителя означает нарушение условий эксплуатации прибора.

Где найти методику поверки для прибора?
Методика поверки данного прибора включена в эксплуатационный документ на прибор. При необходимости ознакомления методику поверки можно прочитать на странице «Прочитать руководство по эксплуатации перед покупкой» раздела «Техническая поддержка» сайта.

Измерительные мосты постоянного тока

Для измерения собирают мостовую схему из 4-х резисторов, один из которых — тестируемый (Rx), а три других — образцовые регулируемые (R1, R2, R3).

Одну диагональ моста подключают к полюсам источника питания, к другой через выключатель и ограничивающий резистор подсоединяют амперметр высокой чувствительности (милли- или микроамперметр). Подстраивая резисторы R1, R2 и R3, проверяющий балансирует мост — добивается, чтобы на амперметре отобразился «0».

Такая ситуация наступит при равенстве произведений сопротивлений на противоположных плечах моста, откуда определяют сопротивление Rx тестируемого элемента по формуле: Rx = (R1*R3)/R2.

Типовые причины неисправности изоляционного покрытия

Несмотря на то, что оболочка современных электрических кабелей изготавливается из качественного и прочного материала – она, тем не менее, иногда теряет свои защитные свойства. Последнее обычно объясняется следующими причинами:

  • разрушительное воздействие высокого напряжения и солнечного света;
  • механические повреждения (деформации);
  • нарушения температурного режима;
  • климатические особенности окружающей местности (жара или сильные морозы, например).

Нарушение целостности изоляции кабеля вследствие механического повреждения

Для выяснения степени повреждения и допустимости дальнейшей эксплуатации проводов и кабелей организуются измерения сопротивления изоляции кабельных трасс.

В этом случае зона разрушений нуждается либо в ремонте (если это допустимо), либо в полной замене участка кабельной трассы или ответвления проводки.

Своевременно проведенное испытание изоляции на прочность позволяет предотвратить целый ряд неприятных последствий, включая КЗ в электросети, поражение людей высоким напряжением и возникновение пожара.

Как пользоваться

Чтобы правильно проводить испытания важно сделать правильное выставление измерительных диапазонов и тестовой энергии. Самый простой метод этого выполнения, использовать специальные таблицы с указанием параметров для разных тестируемых объектов

Важно понимать, что во время тестирования необходимо использование диэлектрических перчаток. Также необходимо убрать посторонних с вывешиванием соответствующих предупреждающих плакатов

Во время подключения щупов, необходимо только касаться тех частей, которые заизолированы. До измерения следует сделать переносной вид заземления для отключения контрольных кабелей. При этом сами измерения нужно проводить при сухой изоляции до превышения допустимых пределов влажности.

Использование аппарата по руководству к эксплуатации как возможность его правильной работы и отсутствия поломок

Как прозвонить кабель

Проверить одножильный кабель можно несколькими манипуляциями, выставив тестовый вид напряжения. Первый щуп должен быть прицеплен на часть жилы, а второй должен быть прицеплен на броню. После этого будет подано напряжение. Если не имеется брони, то необходима земляная жила. При нахождении показаний до 0,5 мОм, значит кабель неизношен и его можно использовать дальше и не заменять.

Обратите внимание! Прозванивая многожильный кабель, нужно осуществлять проверку каждой жили, а из остальных полупроводников сделать сбор единого жгута. Чтобы получить достоверные результаты, необходимо обеспечение хорошего контакта

Правильный прозвон кабеля путем аппарата

Проверка изоляции

Проверка изоляции — еще одна функция измерительного прибора. Изоляция позволяет защитить жилу от соприкосновения с другой жилой. Характеристика изоляционного качества — сопротивление. Это измеряется в омах с производными. Сопротивление является величиной, которая обратна производимости. То есть она может показать возможность непропуска электротока.

Чем меньше изоляция, тем больше возможность нахождение тока пути и распространение из кабеля к токопроводящим поверхностям и материалам. То есть может быть изоляционный кабельный пробой

Важно понимать, что изоляция стареет, ухудшается из-за влажности и механического повреждения. Также ухудшается из-за воздействия агрессивной внешней среды

Проверка изоляции как одно из условий использования

Устройство и принцип работы

Мегаомметр — устройство для измерения сопротивления изоляции проводов и кабелей. При помощи щупов прибор подключается к измеряемой линии, после чего включается. Мегаомметр любого типа содержит источник постоянного напряжения. С его помощью в созданной измерительной цепи он генерирует высокое напряжение, которым и проверяется состояние изоляции кабеля. В зависимости от модели набор калибровочных напряжений может быть разным, могут они подаваться только по одному (более простые и дешевые) или в комбинациях (более сложные и дорогие).

Мегаомметры двух видов — «классический» с динамомашиной и электронный

В данный момент в эксплуатации есть два вида приборов — старого типа со встроенной динамомашиной, которая приводится в действие расположенной на боку прибора ручкой. Есть также электронные мегаомметры, которые могут использовать для создания испытательного напряжения внешние (бытовая электросеть) или внутренние (батарейки, аккумуляторы) источники напряжения. Некоторые модели электронных мегаомметров могут измерять другие электрические параметры сети — напряжение, низкоомное сопротивление и т.п. То есть могут использоваться вместо мультиметра. Правда, у них обычно не очень большой набор калибровочных напряжений для проверки состояния изоляции (обычно это 500 В и 1000 В).

Напряжение калиброванное и его величина выставляется переводом переключателя в нужное положение, выбирается оно в зависимости от типа испытываемого оборудования. Результаты измерений сопротивления изоляции отображаются на шкале (в стрелочных приборах) или на цифровом экране. Для удобства восприятия у стрелочных приборов шкала откалибрована в КОм или МОм.

Схема измерения мегаомметром параметров изоляции кабеля

Принцип работы мегомметра основан на законе Ома: I=U/R, сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению. Во время тестирования необходимо найти сопротивление: R=U/I. Это и проделывает мегаомметр. Он выдает в цепь определенное напряжение (которое вы выставите), измеряет силу тока, пересчитывает и выдает результат на шкале. Это и будет сопротивление изоляции в тестируемой цепи.

Зачем измерять сопротивление

Изоляция является защитой провода от прохождения электротока сквозь него. Во время работы электрических установок их конструкция подвергнется влиянию внешних факторов, старению и изнашиванию в процессе нагревания. Это отрицательно отразится на функциональности оборудования, потому необходимо периодически измерять сопротивления изоляции провода.

Прибор для измерения сопротивления

Чтобы измерить сопротивление, требуется иметь спецразрешение. Электропровод испытывают лишь спецкомпании и организации, имеющие квалифицированных специалистов. Они проходят обучение и получают необходимый разряд по электрической безопасности.

Важно! Проведение замеров требуется, чтобы своевременно обнаруживать повреждения в технике. Изоляция имеет важное значение в безопасности работ с оборудованием

Когда провод имеет повреждения, то установка будет опасна во время работы, так как появляется риск возгорания.

Когда вовремя проверить провод на исправность изоляции, это предупредит такие проблемы:

  • преждевременную поломку техники;
  • короткое замыкание;
  • удар током;
  • различные аварии.

Измерение сопротивления

Потому крайне важно измерять показатели сопротивления изоляционного материала провода

Сертифицированные мегаомметры: обзор производителей

К основным, наиболее значимым техническим характеристикам и параметрам мегаомметров относятся:

  • сопротивление — в пределах 0–49 900 Мом;
  • напряжение — 100–5000 В;
  • рабочие температурные диапазоны — от -20 до + 40°С.

Мегаомметры, проходящие периодическую проверку своей работоспособности в МЕТРОЛОГИИ и внесённые в Реестр средств измерения России, выпускаются многими производителями, но лучше всего зарекомендовали себя гарантировано безопасные и надёжные модели измерительного прибора.

Таблица: список приборов с характеристиками

Модель Тип прибора Напряжение, В Диапазон,гОм Связь с ПК Питание Цена,руб.
1801 IN аналоговый 250 до 1 нет батарейки АА до 5000
MI 2077 цифровой 5000 до 10000 нет аккумулятор 50–75 тыс.
MI 3202 цифровой 5000 до 10000 да аккумулятор 50–75 тыс.
MIC-1000 цифровой 1000 до 100 да аккумулятор 20–50 тыс.
MI 3103 цифровой 1000 до 10 нет батарейка АА 10–20 тыс.
MI 3201 цифровой 5000 до 10000 да аккумулятор 50–75 тыс.
MI 3200 цифровой 10000 до 10000 да аккумулятор >75 тыс.
MIC-2510 цифровой 1000 до 10 да аккумулятор 20–50 тыс.
MIC-2500 цифровой 2500 до 10 да аккумулятор 20–50 тыс.
MIC-30 цифровой 1000 до 10 да аккумулятор 20–50 тыс.
E6–24/1 цифровой 1000 до 10 нет аккумулятор 20–50 тыс.
M 4122 U цифровой 2500 до 300 да аккумулятор 20–50 тыс.
M 4122 RS цифровой 2500 до 100 да аккумулятор 10–20 тыс.
ЭСО 202–1Г цифровой 500 до 10 нет р/генератор 10–20 тыс.
DT 5500 цифровой 1000 до 10 нет батарейки АА 10–20 тыс.
DT 5503 аналоговый 1000 до 1 нет батарейки АА до 5000
DT 5505 цифровой 1000 до 10 нет батарейки АА 10–20 тыс.
1800 IN аналоговый 1000 до 1 нет батарейки АА до 5000
1832 IN аналоговый 1000 до 1 нет батарейки АА 5–10 тыс.
1851 IN цифровой 1000 до 1 нет батарейки АА 5–10 тыс.
MIC-3 цифровой 1000 до 10 нет батарейки АА 10–20 тыс.

Менее популярные у потребителей, но хорошо зарекомендовавшие себя модели цифровых и аналоговых мегаомметров.

Таблица: характеристики цифровых и аналоговых мегаомметров

Модель Типприбора Напряжение, В Диапазон,гОм Связь с ПК Питание Цена,руб.
4101 IN / 4102 MF цифровые 250–1000 до 10 нет батарейки АА 5–10 тыс.
4103 IN / 6210 IN цифровые 500–5000 до 300 нет батарейки АА 5–10 тыс.
4104 IN / 6211 IN / 6212 IN /6201 IN цифровые 10000 до 500 нет аккумулятор 20–50 тыс.
2732 IN аналоговый 250–1000 до 1 нет батарейки АА 5–10 тыс.
MIC-5000 цифровой 250–5000 до 10000 нет аккумулятор >75 тыс.
ЭСО 202–2Г цифровой 250–2500 до 1 нет р/генератор 5–10 тыс.

Мегаомметр — безусловно, один из самых необходимых приборов в работе с высоковольтным оборудованием. К выбору модели и, главное, к правилам безопасности его использования следует относиться с максимальной ответственностью.

Нормы сопротивления изоляции для электрических цепей и установок

Нормативные показатели по допустимому сопротивлению изоляции у электроустановок вводятся отдельно для каждого электротехнического объекта отдельно. Требования к этому показателю существенно отличаются для таких типов оборудования, как:

  1. Силовой или сигнальный кабели, прокладываемые в различных условиях эксплуатации.
  2. Действующие промышленные электроустановки с рабочей проводкой.
  3. Бытовые приборы, имеющие внутреннюю разводку и оснащенные сетевым шнуром.

Основной показатель, из величины которого исходят при нормировании допустимого сопротивления изоляции – действующее в контролируемой цепи напряжение. Причем учитывается не только его абсолютное значение, но и тип питания (однофазное или трехфазное). Ниже приводится перечень некоторых электротехнических устройств и цепей с указанием соответствующего им нормы сопротивления изоляции:

  • кабельные проводки, расположенные на местностях и объектах без отклонений климатических условий от нормальных – 0,5 МОм;
  • стационарные электрические плиты –1 МОм;
  • щитовые с расположенными в них электропроводками и кабелями –1 МОм;
  • электротехнические приемники, работающие от напряжений до 50 Вольт – 0,3 МОм;
  • электромоторы и агрегаты с питающим напряжением 100-380 Вольт – не менее 0,5 МОм.

И, наконец, согласно ПУЭ для любых устройств, включаемых в электрические линии с действующим напряжением до 1 кВ, этот показатель не может быть менее 1 МОм. Определить, какое должно быть сопротивление защитной оболочки эксплуатируемого оборудования поможет изучение сопроводительной документации на конкретный образец.


Допустимые значения сопротивления изоляции

Меры безопасности при измерении

Даже когда возникла необходимость в бытовых условиях провести измерения сопротивления изоляции провода, перед использованием мегаомметра нужно ознакомиться с требованиями по безопасности. Главные правила:

  • Удерживать щупы лишь за изолированный и ограниченный упорами участок.
  • До подсоединения изделия отключается напряжение, нужно удостовериться, что рядом нет людей (вдоль всего измеряемого участка, когда речь о проводах).
  • До подсоединения щупов снимается остаточное напряжение посредством подключения переносного заземления. Отключается тогда, когда щупы установлены.
  • После каждого замера снимается со щупов остаточное напряжение, соединяются оголенные участки.
  • По завершении замеров к жиле подключается переносное заземление, снимается остаточный заряд.
  • Работы проводятся в перчатках.

Правила несложные, однако от них будет зависеть безопасность работника.

Требования к безопасности

Чтобы оценить функциональность электропровода, проводки, требуется замерять сопротивление изоляционного материала. В этих целях используются специальный измерительные приборы. Они будут подавать в измеряемую электроцепь напряжение, после чего на мониторе будут выданы данные.

Приборы и средства измерения

Измерение сопротивления изоляции токопроводящих жил проводится мегаомметрами или специальными установками. Второй вариант, как правило, применяется для проводов напряжением более 1 кВ. Испытания проводятся согласно установленным требованиям ПТЭ. Суть метода заключается в подаче напряжения от постоянного или переменного источника питания с постепенным увеличением его значения до максимально допустимого для конкретного типа кабеля. При фиксации пробоя изоляционного покрытия по итогам испытаний эксплуатация кабельной линии запрещается.

Использование мегаомметра позволяет зафиксировать снижение качества изоляции без ее разрушения. Существуют различные модификации данных устройств, которые можно разделить на две категории:

  • электромеханические;
  • электронные.

Цифровой прибор для измерения сопротивления изоляции

Измерительные приборы выпускаются со следующими номинальными уровнями напряжений: 100, 500, 1000 и 2500 В.

Принцип действия мегаомметра основан на подаче напряжения от постоянного источника питания и фиксации величины образуемого тока. После сопоставления указанных величин, в соответствии с законом Ома, на шкалу или монитор измерительного устройства выдается величина сопротивления.

Главным конструктивным отличием электромеханического и электронного мегаомметра является источник постоянного тока. Для первых предусматривается встроенный ручной генератор, а для вторых аккумуляторная батарея.

Мегаомметр ЭС0202/1Г с ручным генератором

Технические характеристики

Основные метрологические и технические характеристики приведены в таблице 1. Таблица 1

Наименование характеристики

Значение характеристики

Диапазон измерений, кОм (МОм)

от 0 до 200 (от 0 до 100)

Рабочая часть шкалы, кОм (МОм)

от 0 до 200 (от 0 до 20)

Номинальное выходное напряжение, В

от 90 до 110

Длина шкалы, мм, не менее

80

Пределы допускаемой основной погрешности в рабочей части шкалы от длины рабочей части шкалы, %

± 1

Питание мегаомметра осуществляется от встроенного электромеханического генератора

Масса мегаомметра, кг, не более

1,2

Габаритные размеры мегаомметра (длина х ширина х высота), мм, не более

200 x 155 x 140

Рабочие условия применения:

—    температура окружающего воздуха, °С

—    относительная влажность воздуха при температуре окружающего воздуха 30 °С, %

от минус 30 до 40 до 90

Как правильно использовать приборы для измерения сопротивления

Относительно технологии замеров, применять приборы требуется по указанной методике:

  1. Выводят людей из проверяемого места электрической установки. Говорится об опасности, вывешиваются спецплакаты.
  2. Снимается напряжение, обесточивается в полной мере щит, кабель, принимаются меры от случайной подачи напряжения.
  3. Проверяется отсутствие напряжения. Заранее заземляются выводы испытываемого объекта, устанавливаются щупы для измерений, снимается заземление. Такую процедуру проводят во время каждого нового замера, так как смежные элементы накапливают заряд, вносят отклонения в показания и несут риск для жизни.
  4. Монтаж и снятие щупов производят за изолированные ручки в перчатках. Делается акцент на том, что изоляция провода до проверки сопротивления очищается от загрязнения.
  5. Проверяется изоляция провода между фазами. Данные заносят в протокол измерений.
  6. Отключаются автоматы, УЗО, лампы и светильники, отсоединяются нулевые кабели от клеммы.
  7. Производится замер всех линий по отдельности между фазами. Данные также вносятся в протокол.
  8. При выявлении изъянов разбирается измеряемая часть на элементы, находится дефект и устраняется.

По завершении испытания с помощью переносного заземления снимается остаточный заряд с помощью короткого замыкания, разряжаются щупы.

Использование приборов

Опасность повышенных напряжений

Встроенный генератор характеризуется такими показателями выходной мощности, которых хватает не только для оценки состояния изоляции, но и для получения серьезного ожога. Из-за этой особенности к использованию прибора допускаются только обученные электротехники, имеющие как минимум 3 группу допуска к таким приборам.

При выполнении замеров с помощью повышенного напряжения нужно охватить проверяемый участок, клеммы и провода. Для обеспечения защиты задействуются щупы с характерной изоляцией. Одной стороной они фиксируются к проводам, а другая часть оснащена предохранительными кольцами. В результате, это препятствует касанию к открытым участкам и предотвращает возможный удар током.

Чтобы провести измерение, на таких устройствах предусматривается специальная рабочая зона, которая не проводит ток и является безопасным местом для удерживания в руках. Для подключения к схеме используется зажим типа «крокодил» с хорошей изоляцией. Любые другие провода или самостоятельные щупы не допускаются. К тому же, для повышения безопасности процедуры проверяемый участок нужно изолировать от посторонних людей

Это по-особому важно при проверке сопротивления в длинномерных кабелях, имеющих протяженность до нескольких км

Что касается наведенного напряжения, то оно играет весомую роль в точности проводимых измерений. Электроэнергия, которая проходит по проводам ЛЭП, способна создавать определенное магнитное поле, измеряющееся с учетом синусоидального закона. Если кабель обладает внушительной протяженностью, показатели этого напряжения становятся очень большими.

В зависимости от этого фактора точность измерения существенно меняется. Объясняется это тем фактом, что величина и направление тока, проходящего по прибору, остаются неизвестными. Он возникает под воздействием наведенного напряжения, а его показатели появляются возле собственных показаний устройства. В результате на цифровом экране отображается сумма двух токовых величин, а поставленная задача остается нерешенной. Поэтому измерять сопротивления изоляции при наличии любых типов напряжения — бесполезная трата времени и сил.

Описание процесса

Перед началом измерений следует убедиться в отсутствии напряжения на проверяемой аппаратуре. Для этого каждый из проверяемых проводников на несколько секунд заземляется с помощью переносного заземления на штанге.

Дальнейшая схема действий зависит от того, проверяется ли единственный проводник или многожильный кабель. В первом случае измеряют сопротивление изоляции относительно земли.

Если испытанию подлежит кабель, сначала проверяют поочерёдно качество изоляции каждого отдельного провода относительно остальных проводов, соединённых вместе. После этого поочерёдно измеряют сопротивление изоляции каждого отдельного изделия относительно земли. Если требуется проверка силового трансформатора, вначале будет проверяться качество изоляции его выводов относительно корпуса. После этого проверяется сопротивление изоляции между отдельными обмотками трансформатора.

Каждое измерение сопротивления изоляции мегаомметром следует производить в следующем порядке:

  • убедиться, что напряжение на проверяемом проводе отсутствует;
  • подключить мегаомметр к исследуемой цепи;
  • проверить правильность соединений;
  • снять с проводов заземление;
  • провести необходимые измерения;
  • заземлить провода, которые только что проверяли;
  • только после этого отключаем мегаомметр.

Методика измерения этого параметра такова:

  • собирается измерительная цепь;
  • на линию подаётся испытательное напряжение;
  • через 15 секунд после подачи напряжения записываются показания (назовём их R15) — но испытание продолжается;
  • записываются показания через 60 сек. после подачи напряжения (R60).

Отношение значения R60 к R15 и есть «коэффициент адсорбции». Кабель считается хорошим, если этот параметр превышает 1,5.

Кроме коэффициента адсорбции, есть другой важный параметр, который говорит о качестве изоляции и может быть измерен с помощью мегаомметра. Испытание проводят так же, как при измерении коэффициента адсорбции, но показания мегаомметра записывают через 1 минуту и через 10 мин. Отношение R600 к R60 называется индекс поляризации. Он говорит о степени деградации изолирующих материалов.

Современные микропроцессорные мегаомметры умеют самостоятельно отмерять требуемые временные интервалы и вычислять коэффициент адсорбции и индекс поляризации. По окончании испытания такие приборы сразу выводят готовые показания на экран.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector