Определение начального модуля упругости бетона в20, в25
Содержание:
5. ОБРАБОТКА РЕЗУЛЬТАТОВ
5.1. Призменную прочность Rпрвычисляют для каждого образца по формуле
()
где Рр — разрушающая нагрузка, измеренная по шкале силоизмерителя пресса (машины);
F — среднее значение площади поперечного сечения образца, определяемое по его линейным размерам по ГОСТ 10180-78.
5.2. Модуль упругости Еsвычисляют для каждого образца при уровне нагрузки, составляющей 30 % от разрушающей, по формуле
()
где s1 = P1F— приращение напряжения от условного нуля до уровня внешней нагрузки, равной 30 % от разрушающей;
P1— соответствующее приращение внешней нагрузки;
ε1у — приращение упругомгновенной относительной продольной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .
В пределах ступени нагружения деформации определяют по линейной интерполяции.
5.3. Коэффициент Пуассона бетона µ вычисляют для каждого образца при уровне нагрузки, составляющей 30 % разрушающей, по формуле
()
где ε2у — приращение упругомгновенной относительной поперечной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .
5.4 Значения ε1у и ε2у определяют по формулам:
ε1у = ε1 — ∑ε1п; ()
ε2у = ε2 — ∑ε2п, ()
где ε1 и ε2 — приращения полных относительных продольных и поперечных деформаций образца, соответствующие уровню нагрузки Р1= 0,3Рр и измеренные в конце ступени ее приложения;
∑ε1п и ∑ε2п — приращения относительных продольных и поперечных деформаций быстронатекающей ползучести, полученные при выдержках нагрузки на ступенях нагружения до уровня нагрузки Р1 = 0,3Рр.
Приращения относительных продольных и поперечных деформаций вычисляют как среднее арифметическое показаний приборов по четырем граням призмы или трем — четырем образующим цилиндра.
5.5. Значения относительных деформаций ε1 и ε2 определяют по формулам:
ε1 = Dl1l1; ()
ε2 = Dl2l2, ()
где Dl1, Dl2 — абсолютные приращения продольной и поперечной деформаций образца, вызванные соответствующим приращением напряжений;
l1, l2 — фиксированные базы измерения продольной и поперечной деформации образца.
При использовании тензорезисторов и других аналогичных приборов, шкалы которых проградуированы в относительных единицах деформаций, величины ε1и ε2 определяют непосредственно по шкалам измерительных приборов.
5.6 При определении средних значений призменной прочности, модуля упругости и коэффициента Пуассона в серии образцов предварительно отбраковывают анормальные (сильно отклоняющиеся) результаты испытаний.
Для отбраковки анормальных результатов в серии из трех образцов сравнивают значения yiпризменной прочности, модуля упругости или коэффициента Пуассона в серии, показавших наибольшие и наименьшие значения этих величин со средними их значениями в серии , определенными по формуле (), и проверяют в соответствии с требованием ГОСТ 10180-78 выполнение условий, приведенных в формулах () и () указанного стандарта. Если эти требования не выполняются, то поступают в соответствии с требованием ГОСТ 10180-78; если условия выполняются, то средние значения призменной прочности бетона, его модуля упругости и коэффициента Пуассона в серии образцов определяют по формуле
()
где — среднее значение указанных величин в серии образцов данного размера;
yi — значение указанных величин по отдельным образцам;
п — число образцов в серии.
5.7. В журнале результатов испытаний должны быть предусмотрены графы в соответствии с требованиями ГОСТ 10180-78, за исключением значения масштабного коэффициента, поскольку этот коэффициент при определении призменной прочности, модуля упругости и коэффициента Пуассона не требуется.
В журнале результатов испытаний должны быть предусмотрены, кроме того, дополнительные графы:
а) состав бетона, жесткость или подвижность смеси, вид, завод-изготовитель и активность вяжущих, вид заполнителей и добавок;
б) модуль упругости бетона отдельных образцов, МПа;
в) средний модуль упругости бетона в серии образцов, МПа;
г) значение коэффициента Пуассона отдельных образцов;
д) среднее значение коэффициента Пуассона в серии образцов;
е) база измерения деформаций, мм;
ж) тип тензометра, примененный для измерения линейных деформаций образца (цена его деления);
з) температура нагрева;
и) температура и относительная влажность воздуха помещения, в котором производились испытания.
В графе «Примечания» должны быть указаны дефекты образцов, особый характер их разрушения, отбраковка результатов испытаний, ее причины и т.д. в соответствии с требованиями ГОСТ 10180-78.
5.8. Применяемые в стандарте основные термины, обозначения и пояснения приведены в приложении .
Закон Гука в математической форме
Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:
,
где изменение длины тела вследствие сжатия или растяжения, F сила, приложенная к телу и вызывающая деформацию (сила упругости), k коэффициент упругости, измеряется в Н/м.
Следует помнить, что закон Гука справедлив только для малых растяжений.
Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:
, но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .
В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.
Степень применимости можно рассмотреть в таком виде:
Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться
На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.
При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит слипание витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.
Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:
Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:
К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 Ньютон, из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.
Дано:
Решение:
Найдем численное значение деформации пружины:
Запишем:
Отсюда можем выразить значение коэффициента:
Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.
Модуль сдвига
Литература
Модуль сдвига
Сдвигом называют деформацию, при которой все слои тела, параллельные некоторой плоскости, смещаются друг относительно друга. При сдвиге объем деформируемого образца не меняется.
Модуль сдвига (N) – одна из нескольких величин, характеризующих упругие свойства материала.
Модуль сдвига связан с модулем Юнга через коэффициент Пуассона:
1 кгс/мм2 = 10-6 кгс/м2 = 9,8·106 Н/м2 = 9,8·107 дин/см2 = 9,81·106 Па = 9,81 МПа. Модуль сдвига материалов
Материал | Модуль сдвига | ||
кгс/мм2 | Н/м2 | МПа | |
Металлы | |||
Алюминий | 2300-2700 | 2250-2650 | 22500-26500 |
Алюминий отожженный | 2500 | 2450 | 24500 |
Бронза | 4400 | 4320 | 43200 |
Бронза алюминиевая, литье | 4180 | 4100 | 41000 |
Бронза фосфористая катаная | 4180 | 4100 | 41000 |
Висмут | 1200-1400 | 1180-1370 | 11800-13700 |
Висмут литой | 1220 | 1200 | 12000 |
Вольфрам | 13300 | 13050 | 130500 |
Вольфрам отожженный | 8970-21910 | 8800-21500 | 88000-215000 |
Дюралюминий | 2750 | 2700 | 27000 |
Дюралюминий катаный | 2650 | 2600 | 26000 |
Железо кованое | 8000-8300 | 7850-8150 | 78500-81500 |
Железо литое | 3570-5400 | 3500-5300 | 35000-53000 |
Золото | 2600-3900 | 2550-3830 | 25500-38300 |
Золото отожженное | 2970 | 2910 | 29100 |
Инвар | 5600 | 5500 | 55000 |
Кадмий | 1940 | 1900 | 19000 |
Кадмий литой | 1960 | 1920 | 19200 |
Константан | 6200 | 6080 | 60800 |
Латунь | 2700-3700 | 2650-3630 | 26500-36300 |
Латунь корабельная катаная | 3670 | 3600 | 36000 |
Латунь холоднотянутая | 3470-3670 | 3400-3600 | 34000-36000 |
Манганин | 4700 | 4610 | 46100 |
Медь | 4000-4800 | 3920-4700 | 39200-47000 |
Медь деформированная | 4230 | 4150 | 41500 |
Медь прокатанная | 3980 | 3900 | 39000 |
Медь холоднотянутая | 4890 | 4800 | 48000 |
Нейзильбер | 4000 | 3920 | 39200 |
Никель | 7500 | 7360 | 73600 |
Олово | 1700 | 1670 | 16700 |
Олово литое | 1670-1810 | 1640-1780 | 16400-17800 |
Палладий | 4000-5000 | 3920-4900 | 39200-49000 |
Палладий литой | 5200 | 5110 | 51100 |
Платина | 6000-7200 | 5880-7060 | 58800-70600 |
Платина отожженная | 6200 | 6090 | 60900 |
Свинец | 550-600 | 540-580 | 5400-5800 |
Свинец литой | 575 | 562 | 5620 |
Серебро | 2500-2900 | 2450-2840 | 24500-28400 |
Серебро отожженное | 2640 | 2590 | 25900 |
Сталь инструментальная | 8000-8500 | 7850-8340 | 78500-83400 |
Сталь легированная | 8150 | 8000 | 80000 |
Сталь специальная | 8500-8800 | 8340-8630 | 83400-86300 |
Титан | 4480 | 4400 | 44000 |
Цинк | 3000-4000 | 2940-3920 | 29400-39200 |
Цинк катаный | 3160 | 3100 | 31000 |
Чугун | 2900-3500 | 2840-3430 | 28400-34300 |
Чугун белый, серый | 4480 | 4400 | 44000 |
Чугун ковкий | 4000 | 3920 | 39200 |
Пластмассы | |||
Плексиглас | 151 | 148 | 1480 |
Целлулоид | 66 | 65 | 650 |
Резины | |||
Каучук | 0,28 | 0,27 | 2,7 |
Резина мягкая вулканизированная | 0,05-0,15 | 0,05-0,15 | 0,5-1,5 |
Различные материалы | |||
Бетон | 715-1730 | 700-1700 | 7000-17000 |
Гранит | 1430-4490 | 1400-4400 | 14000-44000 |
Известняк плотный | 1530 | 1500 | 15000 |
Кварцевая нить (плавленая) | 3160 | 3100 | 31000 |
Мрамор | 1430-4490 | 1400-4400 | 14000-44000 |
Стекло | 1780-2950 | 1750-2900 | 17500-29000 |
Литература
- Краткий физико-технический справочник. Т.1 / Под общ. ред. К.П. Яковлева. М.: ФИЗМАТГИЗ. 1960. – 446 с.
- Справочник по элементарной физике / Н.Н. Кошкин, М.Г. Ширкевич. М., Наука. 1976. 256 с.
- Таблицы физических величин. Справочник / Под ред. И.К. Кикоина. М., Атомиздат. 1976, 1008 с.
4. ПРОВЕДЕНИЕ ИСПЫТАНИЙ
4.1. При определении модуля упругости и коэффициента Пуассона шкалу силоизмерителя испытательного пресса (машин) выбирают из условия, что ожидаемое значение разрушающей нагрузки Рр должно быть от 70 % до 80 % от максимальной, допускаемой выбранной шкалой. При определении призменной прочности шкалу силоизмерителя выбирают в соответствии с требованиями ГОСТ 10180-78.
4.2. Перед испытанием образец с приборами устанавливают центрально по разметке плиты пресса и проверяют совмещение начального отсчета с делением шкалы прибора.
4.3. Начальное усилие обжатия образца, которое в последующем принимают за условный нуль, должно быть не более 2 % ожидаемой разрушающей нагрузки.
Значение ожидаемой разрушающей нагрузки при испытании образцов устанавливают по данным о прочности бетона, принятой в технической документации, или по прочности на сжатие изготовленных из одного замеса образцов-кубов, определенной в соответствии с ГОСТ 10180-78. Ее значение при одинаковых сечениях кубов и призм следует принимать от 80 % до 90 % средней разрушающей нагрузки образцов-кубов.
4.4. При центрировании образцов необходимо, чтобы в начале испытания от условного нуля до нагрузки, равной (40 ± 5 %)Рр отклонения деформаций по каждой грани (образующей) не превышали 15 % их среднего арифметического значения.
При несоблюдении этого требования при нагрузке, равной или большей (15 ± 5 %)Рр, следует разгрузить образец, сместить его относительно центральной оси разметки плиты пресса в сторону больших деформаций и вновь произвести его центрирование.
Образец бракуют после пяти неудачных попыток его центрирования.
4.5. При центрировании образцов деформации фиктивных волокон, совпадающих с центрами отверстий, в которых крепят индикаторы (см. чертеж), относят к граням образца и определяют по формулам:
()
()
где D1‘ и D2‘ — деформации фиктивных волокон на противоположных гранях образца;
D1 и D2 — деформации, отнесенные к граням образца;
а — размер стороны образца;
с — расстояние от грани образца до центра отверстий, в которых крепят индикаторы.
4.6. При определении призменной прочности, модуля упругости и коэффициента Пуассона бетона нагружение образца до уровня нагрузки, равной (40 ± 5 %)Рр, следует проводить ступенями, равными 10 % ожидаемой разрушающей нагрузки, сохраняя в пределах каждой ступени скорость нагружения (0,6 ± 0,2) МПа/с.
На каждой ступени следует проводить выдержку нагрузки от 4 до 5 мин (при нагреве — до 15 мин) и записывать отсчеты по приборам в начале и в конце выдержки ступени нагрузки в журнал по форме приложения .
При уровне нагрузки, равной (40 ± 5) %Рр, снимают приборы с образца, если нет других требований, предусмотренных программой испытания. После снятия приборов дальнейшее нагружение образца следует проводить непрерывно с постоянной скоростью в соответствии с требованием ГОСТ 10180-78.
4.7. Машины (прессы) для испытаний следует эксплуатировать в соответствии с техническими условиями и правилами. Они должны быть снабжены страховочными приспособлениями в виде упругих элементов, воспринимающих нагрузку разрушения образца и гасящих упругую энергию.
Рабочее пространство при проведении испытаний должно быть ограждено металлическими сетками с целью предотвращения разлетания осколков бетона при разрушении образца.
4.8. Лица, допущенные к проведению испытаний, должны пройти курс обучения, включающий изучение настоящего стандарта, правил эксплуатации испытательных машин (прессов), приборов и аппаратуры, а также инструкции по безопасности труда. Программа обучения должна быть утверждена руководителем организации (предприятия).
Технические характеристики
Тяжелый бетон В20 М250 обладает средними характеристиками между М200 и М300, что делает его оптимальным для эксплуатации в некоторых условиях.
Основные технические показатели материала:
Показатель | Единицы измерения | Значение |
---|---|---|
Прочность на сжатие | кг/см2 | 260 – 262 |
Расчетное сопротивление на осевое сжатие | Rb, МПа | 11,5 |
Rbt, МПа | 0,90 | |
Плотность | кг/м3 | 1800 – 2300 |
Морозостойкость | Циклов, F | f50, f75, f100, f150 |
Водонепроницаемость | w2, w4, w6, w8 | |
Подвижность раствора | При измерении конусом | П2-П4 |
Модуль упругости | Еb, МПа ∙ 10-3 | 27,5 |
Вес бетона сильно варьируется из-за свойств наполнителей, в частности – щебня. Если используется известняк с низким удельным весом, то масса бетонного раствора не превысит 1800-1900 кг за тонну, при введении гранитного камня показатель увеличивается до максимального значения.
В состав бетона могут входить пластификаторы, оказывающие влияние на подвижность, прочность, водонепроницаемость и морозостойкость раствора. Посредством присадок можно получить гидротехнический бетон В20.
П2-П4 означает хорошую подвижность рабочей массы, материал можно подавать на объект бетононасосом, повышая эффективность и скорость труда.
Стандарт определения и таблица модулей упругости бетона
Выбор стройматериала является важнейшей задачей строителя перед началом выполнения работ. Модуль упругости бетона — один из главных критериев, влияющих на эксплуатационные характеристики
Параметр определяет возможность стеснения и расширения материала, зависит от многих факторов, которые важно учитывать
Что за величина?
Модуль упругости бетона — это возможность конструкции противостоять изменениям под воздействиями внешних факторов.
Это важный критерий выбора марки материала для определенной работы, так как затвердевший материал в процессе эксплуатации сжимается и растягивается.
Поэтому на этапе проектирования нужно правильно рассчитать допустимые значения для той или иной конструкции. Для расчетов пользуются таблицами определения модуля упругости, что представлены в нормативах для строительных работ.
Разновидности бетона и их показатель упругости
Бетонный камень в окончательном виде — твердый материал, что под влиянием внешней среды способен деформироваться. При постоянных механических нагрузках, даже модуль упругости железобетона может быть недостаточно высоким. Для определения вида прочности учитывается 2 критерия — растяжение и сжатие, что влияют на сопротивление нагрузкам.
Различают следующие виды материала:
Материал может производиться в нескольких разновидностях.
- тяжелые;
- легкие;
- мелкозернистые;
- поризованные;
- автоклавного твердения.
Таблица, содержащая классы и соответствующие модули упругости
Классификация в таблице производится согласно СП 52—101—2003:
Класс бетона | Модуль упругости |
19,0 | В10 |
24,0 | В15 |
27,5 | В20 |
30,0 | В25 |
32,5 | В30 |
34,5 | В35 |
36,0 | В40 |
37,0 | В45 |
38,0 | В50 |
39,0 | В55 |
39,5 | В60 |
От чего зависит величина?
На величину данного показателя значительно влияет наполнитель в материала.
Упругость раствора зависит от множества факторов
Первое, на что обращают внимание — наполнитель. Коэффициент напрямую связан с упругостью раствора
Так, высокими показателями являются тяжелые бетоны, наполнителями в которых являются гравий и щебень
Допустимые нагрузки на постройки из такого материала самые высокие, поэтому важно выбирать правильные заполнители
Учитывают не только интенсивность нагрузок, но и частоту.
Возраст и время укладки материала играют немаловажную роль в показателях модуля упругости. Крепость материала возрастает на протяжении 50 лет с момента заливки, вне зависимости от внешних температур (до 230 ⁰C).
Кроме того, характеристики завися от процесса затвердевания (автоклавный, естественный).
Чтобы узнать продолжительность предполагаемых нагрузок, нужно начальный показатель перемножать с показателем: 0,7 для поризованных бетонов, 0,85 — для тяжелых легких и мелкозернистых.
Возраст залитого материала находится в прямопропорциональной зависимости с данным показателем.
Классы бетонного раствора в частной стройке варьируют в пределах В7,5—30 (марки М100—400), но таких прочностных и других характеристик хватает вне зависимости от требований и сложностей конструкций.
Показатели модуля увеличивает арматура, так как характеристики арматуры повышают показатели общей конструкции. Методика укладки арматуры в бетон определяется ГОСТом 24452—80.
Посмотреть «ГОСТ 24452-80» или cкачать в PDF (350 KB)
Как определить?
СП 52 101 2003 — стандарт определения параметров применения бетона.
Здесь указаны значения всех необходимых коэффициентов для расчета параметров, а подтверждение проводится путем эксперимента на изготовленных образцах.
Суть испытания заключается в постепенной нагрузке на образцы (цилиндры или призмы из бетонной смеси) путем осевого сжимающего нагружения до разрушения. Параллельно измеряется степень деформации.
Посмотреть «СП 52-101-2003» или cкачать в PDF (1007.4 KB)
Результаты можно обозначить следующим образом:
- Показатель соответствует расчетам, образец поддался пластической деформации без растрескивания.
- Предварительные подсчеты неверные: при предполагаемом нагружении образец подвергается сильным разрушениям.
Расчетным способом определяют запас прочности не только обычных зданий, но и арочных сооружений, перекрытий, мостов и дорог. Модуль упругости асфальтобетона при использовании — проблемная задача проектирования, так как подход, разрешающий провести точные расчеты еще не выведен. Не удается определить взаимосвязь между статическим и динамическим модулями в процессе использования дорог.
Общее понятие
Модуль упругости (также известный как модуль Юнга) – один из показателей механических свойств материала, который характеризует его сопротивляемость деформации растяжения. Другими словами, его значение показывает пластичность материала. Чем больше модуль упругости, тем менее будет растягиваться какой-либо стержень при прочих равных условиях (величина нагрузки, площадь сечения и прочее).
В теории упругости модуль Юнга обозначается буквой Е. Является составной частью закона Гука (закона о деформации упругих тел). Связывает напряжение, возникающее в материале, и его деформацию.
Согласно международной стандартной системе единиц измеряется в МПа. Но на практике инженеры предпочитают использовать размерность кгс/см2.
Определение модуля упругости осуществляется опытным путем в научных лабораториях. Суть данного способа заключается в разрыве на специальном оборудовании гантелеобразных образцов материала. Узнав напряжение и удлинение, при котором произошло разрушение образца, делят данные переменные друг на друга, тем самым получая модуль Юнга.
Отметим сразу, что таким методом определяются модули упругости пластичных материалов: сталь, медь и прочее. Хрупкие материалы – чугун, бетон – сжимают до появления трещин.
Дополнительные характеристики механических свойств
Модуль упругости дает возможность предугадать поведение материла только при работе на сжатие или растяжение. При наличии таких видов нагрузок как смятие, срез, изгиб и прочее потребуется введение дополнительных параметров:
- Жесткость есть произведение модуля упругости на площадь поперечного сечения профиля. По величине жесткости можно судить о пластичности уже не материала, а узла конструкции в целом. Измеряется в килограммах силы.
- Относительное продольное удлинение показывает отношение абсолютного удлинения образца к общей длине образца. Например, к стержню длиной 100 мм приложили определенную силу. Как результат, он уменьшился в размере на 5 мм. Деля его удлинение (5 мм) на первоначальную длину (100 мм) получаем относительное удлинение 0,05. Переменная является безразмерной величиной. В некоторых случаях для удобства восприятия переводится в проценты.
- Относительное поперечное удлинение рассчитывается аналогично вышепредставленному пункту, но вместо длины здесь рассматривается диаметр стержня. Опыты показывают, что для большинства материалов поперечное удлинение в 3-4 раза меньше, чем продольное.
- Коэффициент Пуансона есть отношение относительной продольной деформации к относительной поперечной деформации. Данный параметр позволяет полностью описать изменение формы под воздействием нагрузки.
- Модуль сдвига характеризует упругие свойства при воздействии на образец касательных напряжений, т. е. в случае, когда вектор силы направлен под 90 градусов к поверхности тела. Примерами таких нагрузок является работа заклепок на срез, гвоздей на смятие и прочее. По большому счету, модуль сдвига связан с таким понятием как вязкость материла.
- Модуль объемной упругости характеризуется изменением объема материала для равномерного разностороннего приложения нагрузки. Является отношением объемного давления к объемной деформации сжатия. Примером такой работы служит опущенный в воду образец, на который по всей его площади воздействует давление жидкости.
Помимо вышесказанного необходимо упомянуть, что некоторые типы материалов имеют различные механические свойства в зависимости от направления нагрузки. Такие материалы характеризуются как анизотропные. Яркими примерами служит древесина, слоистые пластмассы, некоторые виды камня, ткани и прочее.
У изотропных материалов механические свойства и упругая деформация одинаковы в любом направлении. К ним относят металлы (сталь, чугун, медь, алюминий и прочее), неслоистые пластмассы, естественные камни, бетон, каучук.
От чего зависит модуль упругости бетона?
Упругие свойства бетона зависят от факторов:
- качества и объемного содержания заполнителей;
- класса материала;
- температуры воздуха и интенсивности радиоактивного излучения;
- влажности среды;
- времени воздействия нагрузки;
- условий твердения смеси;
- возраста бетона;
- армирования.
Заполнители
Бетон представляет собой конгломерат из двух составляющих — цементного камня и заполнителей. В неоднородной структуре возникает сложное напряженное состояние. Более жесткие частицы воспринимают основную часть нагрузки, а вокруг пор и пустот образуются участки с поперечными растягивающими усилиями.
Крупный заполнитель, обладая высоким модулем Юнга, увеличивает упругие свойства бетона. Мелкие пылеватые частицы, поры и пустоты снижают их.
Класс бетона
Чем выше класс материала, т.е. больше его прочность на сжатие и плотность, тем лучше он сопротивляется деформирующим нагрузкам. Наиболее высоким модулем упругости обладает бетон В60 — 39,5 МПа*10-3, минимальный показатель у композита класса В10- 19 МПа*10-3.
Температура и радиация
Повышение температуры окружающей среды, интенсивности солнечной радиации приводят к уменьшению упругих свойств и росту деформаций. Связано это с увеличением внутренней энергии бетона, изменению траекторий движения молекул в твердом теле, линейному расширению материала, и, как следствию, усилению пластичности.
Разницу не учитывают при колебаниях в пределах 20°С. Большие температурные изменения существенно влияют на деформацию бетонных конструкций. В таблице СП 63.13330.2012 указаны величины модулей упругости в зависимости от температуры.
Влажность
Колебания влажности воздуха приводят к изменению упругих свойств материала. В расчетах применяют коэффициент ползучести φ. Чем больше содержание водяных паров в окружающей среде, тем ниже показатель и соответственно меньше пластические деформации конструкции.
Время приложения нагрузки
Модуль упругости зависит от времени действия нагрузки. При мгновенном нагружении конструкции деформации пропорциональны величине внешних сил. При длительных напряжениях величина E уменьшается, изменения развиваются по нелинейной зависимости и суммируются из упругих и пластичных деформаций.
Условия набора прочности
При проведении испытаний замечено, что у бетона естественного твердения модуль упругости выше, чем при обработке материала пропариванием при атмосферном давлении или в автоклавных установках.
Это объясняется тем, что изменение условий набора прочности приводит к образованию большего количества пор и пустот из-за неравномерного температурного расширения объема, ухудшения качества гидратации цементных зерен. Такой бетон обладает более низкими упругими свойствами по сравнению с затвердевшим в нормальных условиях.
Возраст бетона
Свежеуложенный бетон набирает прочность в течение 28 суток. Но даже по истечении этого времени материал при нагрузке обладает одновременно упругими и пластическими свойствами. Наибольшей твердости он достигает примерно через 200-250 суток. Показатель E в этом возрасте максимальный, соответствующий марочной прочности.
Армирование конструкций
Для восприятия растягивающих и сжимающих усилий в железобетон помещают каркасы или сетки из арматуры классов АI, AIII, А500С, Ат800, а также из композитов или древесины.
Применение армирования увеличивает упругость, прочность конструкции на сжатие и на растяжение при изгибе, препятствует образованию усадочных и деформационных трещин.