Что такое контактор: назначение, принцип работы, виды, схемы подключения

Назначение и устройство

Перед подключением необходимо ознакомиться с принципом работы устройства и его особенностями. Включает контактор МП управляющий импульс, который исходит от пусковой кнопки после ее нажатия. Так осуществляется подача на катушку напряжения. Согласно принципу самоподхвата, контактор удерживается в режиме подключения. Суть этого процесса заключается в параллельном подключении дополнительного контакта к кнопке пуска, что организовывает подачу на катушку тока, поэтому необходимость удерживания в нажатом состоянии кнопки запуска пропадает.

С оборудованием кнопки отключения в схеме становится возможным разрыв цепи катушки управления, что отключает МП. Управляющие кнопки устройства носят название кнопочного поста. Они имеют по 2 пары контактов. Универсализация управляющих элементов сделана для организации возможных схем с моментальным реверсом.

Кнопки маркируются названием и цветом. Как правило, включающие элементы называются «Старт», «Вперед» или «Пуск». Обозначаются зеленым, белым или другим нейтральным цветом. Для размыкающего элемента используется название «Стоп», кнопка агрессивного, предупреждающего цвета, обычно красного.

Цепь необходимо коммутировать нейтралью, при использовании в ней катушки на 220 В. Для вариантов с электромагнитной катушкой с рабочим напряжением 380 В, на цепь управления подается снятый с другой клеммы ток. Поддерживает работу в сети с переменным или постоянным напряжением. Принцип схемы базируется на электромагнитной индукции используемой катушки с вспомогательными и рабочими контактами.

Различают два вида МП с контактами:

  1. Нормально замкнутыми — отключение питания на нагрузке происходит в момент срабатывания пускателя.
  2. Нормально разомкнутыми — подача питания осуществляется только во время работы МП.

Второй тип применяется более широко, поскольку большинство устройств функционирует ограниченный период, пребывая основное время в состоянии покоя.

Состав и назначение частей

В основе конструкции магнитного контактора лежит магнитопровод и катушка индуктивности. Магнитопровод представляет собой разделенные на 2 части металлические элементы в форме «Ш», зеркально друг к другу расположенные внутри катушки. Их средняя часть играет роль сердечника, усиливая индукционный ток.

Магнитопровод оснащен подвижной верхней частью с закрепленными контактами, к которым подводится нагрузка. На корпусе МП закрепляются неподвижные контакты, на которых устанавливается питающее напряжение. Внутри катушки на центральном сердечнике установлена жесткая пружина, препятствующая соединению контактов в выключенном состоянии устройства. При этом положении на нагрузку питание не подается.

В зависимости от конструкции, бывают МП малых номиналов на 110 В, 24 В или 12 В, но более широко используются с напряжением 380 В и 220 В. По величине подаваемого тока различают 8 категорий пускателей: «0» — 6,3 А; «1» — 10 А; «2» — 25 А; «3» — 40 А; «4» — 63 А; «5» — 100 А; «6» — 160 А; «7» — 250 А.

Принцип работы

В нормальном (отключенном) состоянии размыкание контактам магнитопровода обеспечивает установленная внутри пружина, приподнимающая верхнюю часть устройства. При подключении к сети МП, в цепи появляется электрический ток, который, проходя по виткам катушки, генерирует магнитное поле. В результате притяжения металлических частей сердечников пружина подвергается сжатию, допуская замыкание контактов движимой части. После этого ток получает доступ к двигателю, запуская его в работу.

ВАЖНО: Для переменного или постоянного тока, который подается на МП, необходимо выдерживать указанные производителем номинальные значения! Как правило, для постоянно тока предельное значение напряжения составляет 440 В, а для переменного не должно превышать показатель 600 В. Если нажимается кнопка «Стоп» или другим способом отключается питание МП, то катушка прекращает генерировать магнитное поле

В результате этого пружина легко выталкивает верхнюю часть магнитопровода, размыкая контакты, что приводит к прекращению подачи на нагрузку питания

Если нажимается кнопка «Стоп» или другим способом отключается питание МП, то катушка прекращает генерировать магнитное поле. В результате этого пружина легко выталкивает верхнюю часть магнитопровода, размыкая контакты, что приводит к прекращению подачи на нагрузку питания.

Устройство и принцип работы

Основу пускателя составляют катушка индуктивности и магнитопровод, состоящий из подвижной и неподвижной частей. Неподвижная часть является нижней и закреплена на корпусе, верхняя подпружинена и способна свободно двигаться.

В нижней части магнитопровода монтируется катушка, и в прямой зависимости от её намотки изменяется номинал контактора. Выпускаются катушки от 12 до 380 вольт.

Что касается верхней части магнитопровода, то здесь присутствуют подвижные и неподвижные группы контакторов.

Когда питание отсутствует, пружины отжимают часть магнитопровода, находящуюся вверху. В этом случае контакты находятся в состоянии ожидания или исходном состоянии. При подаче напряжения в катушке образуется электромагнитное поле, под действием которого верхняя часть сердечника притягивается. Вследствие этого контакты меняют своё положение.

При снятии напряжения система возвращается к первоначальному состоянию. Контакты замыкаются при подаче напряжения и размыкаются при его снятии. Электромагнитный пускатель работает как на постоянном, так и на переменном токах, главное, чтобы параметры были не больше тех, что указаны заводом производителем.

Критерии выбора

Во время выбора пускателя следует руководствоваться его базовыми техническими характеристиками, а также некоторыми конструктивными особенностями, которые и рассмотрим ниже.

Напряжение (номинальное) в коммутируемой цепи

Подавляющее большинство магнитных пусковых устройств используется для запуска асинхронных электродвигателей, имеющих коротко замкнутый ротор и рассчитанных на внутризаводское напряжение 220 В/380 В. В случае, если используются электромоторы под вольтаж 380 В/660 В (что бывает значительно реже), то и пускатель надо выбирать соответствующий им по напряжению.

Номинальная величина тока основных контактов

Соотношение величин тока коммутационного устройства и тока подключаемой нагрузки – один из важнейших параметров при выборе пускателя. Для ПУ, производство которых ведется в соответствии с ГОСТами, применяется условное деление на классы.

Для того, чтобы произвести выбор устройства по этому параметру, можно воспользоваться следующей таблицей:

Характеристики ПМЛ

Износостойкость коммутационная

Ее величина равна гарантированному количеству срабатываний, заявленному фирмой-изготовителем. Все пусковые устройства в данном случае делятся на 3 класса износостойкости: А, Б, В. Первый из них – самый высокий. Он гарантирует, что пускатель выдержит не менее 1,5 млн циклов. Классу Б соответствует величина от 630.000 до 1,5 млн циклов. Класс В – самый низкий. Приборы, отнесенные к нему, выдерживают от 100.000 до 500.000 рабочих циклов.

Износостойкость механическая

Это не менее важная характеристика, которая показывает количество возможно допустимых включений/выключений аппарата без выхода из строя (при этом, все манипуляции в данном случае выполняются без нагрузки, а чисто механически). Величина этого параметра, в отличие от срабатывания под напряжением, значительно больше. В зависимости от типа ПУ она может составлять от 3 млн циклов до 20 млн циклов.

Количество полюсов

Для питания трехфазных электромоторов в большинстве случаев используются трехполюсные магнитные пускатели. Но, иногда возникают ситуации (например, когда источником нагрузки являются электронагревательные системы либо сети освещения), когда лучшим вариантом будет выбор многополюсного пускателя (среди таких устройств зарубежного производства встречаются аппараты с восемью и более полюсами).

Количество полюсов

Напряжение катушки (номинальное)

Большая часть пускателей, используемых при управлении электрооборудованием, имеют установленные в них катушки, рассчитанные на тоже напряжение, что и питающая сеть. При этом, иногда может возникнуть потребность в пускателе, имеющим катушку с напряжением, отличным от сетевого (к примеру, при обустройстве автоматических цепей). Производимые в настоящее время ПУ позволяют выбрать катушку под любое стандартное напряжение (9, 12,24,36…380 вольт, а некоторые и под более высокое).

Количество вспомогательных контактов и их параметры

Кроме главных контактов, служащих для коммутации основных электрических цепей, большинство магнитных пускателей также имеет и дополнительные (вспомогательные), срабатывание которых происходит одновременно со срабатыванием главных. Основное их предназначение – подключение сигнальных устройств, цепей блокировки, управления и других. Все эти дополнительные контакты делятся на два типа – нормально замкнутые и нормально разомкнутые. Первые замкнуты при выключенной главной катушке, и наоборот, а вторые синхронны с ней.

Возможность реверса

Для управления реверсивными электромоторами следует выбирать реверсивные ПУ, внутри которых находятся два отдельных пускателя, подсоединенных друг к другу.

Защита

В базовом исполнении магнитные пускатели, как правило, не имеют систем защиты электрооборудования. При необходимости этот блок можно приобрести дополнительно

Кроме этого, как и для всего электрооборудования, при выборе ПУ следует обратить внимание на величину его климатического параметра (IP) – чем хуже условия среды, в которых он будет работать, тем величина этого параметра должна быть выше

Пускатель в корпусе

Номинальный ток и напряжение питания катушки управления

Номинальный ток — наиболее значимый параметр, подбираемый по мощности потребителя. Главный вопрос: как правильно считать? Любой электродвигатель при запуске кратковременно выдает мощность, часто в 5-7 раз превышающую номинальную. Тем не менее такая нагрузка сохраняется долю секунды и на работу расцепителя не влияет

Исходя из этого, берем во внимание только номинальную мощность

Для определения номинала необходимо рассчитать In . В этом нам поможет формула из учебника по физике: In = P/(U √3xcosφ), где P — мощность (Вт), U — напряжение (В), а cosφ- коэффициент мощности двигателя.

Для наглядности рассмотрим конкретный пример: предположим, что у Вас трехфазный станок на 5,5 кВт c cosφ= 0,8 (данное значение записано в паспорте электрооборудования). При включении, по сети будет протекать:

5500Вт / (380Вx√3×30,8)= 10,6А.

К полученному значению еще необходимо прибавить 30% запаса, в итоге оптимальным номиналом будет 13А.

Например, если In будет равен 11,8А, ни в коем случае нельзя брать модель на 12А, иначе при увеличении мощности она сгорит.

Электропитание катушки управления подбирается по двум критериям: тип электротока (переменный или постоянный) и напряжение (от 12В до 440В — постоянный, от 12В до 660В — переменный при частоте 50 Гц и от 24В до 660В — переменный при 60 Гц). Существуют также универсальные модели с катушкой работающей и от переменного, и от постоянного тока.

Классификация контакторных устройств

Существуют различные типы контакторов, отличающихся друг от друга по различным показателям. Среди них можно выделить следующие параметры.

В первую очередь, они классифицируются по назначению. Сюда входят следующие виды и категории:

  1. Приборы для дистанционной коммутации. Большинство из них работает под ручным управлением оператора, используя кнопки или выключатели. В нужное время подается сигнал, и устройство приводится в действие. В другом способе несколько контакторов соединяются в общую автоматизированную систему питания, в которой для подачи команд используется электронная схема. На случай аварийной ситуации предусмотрена система защиты, размыкающая контакты.
  2. Включение мощного электрооборудования при помощи слаботочных линий. Возникает вопрос, для чего нужен контактор в таких случаях? Не лучше ли воспользоваться традиционной кнопкой? Это, конечно, можно сделать, но тогда понадобится очень массивная и громоздкая аппаратура, а сам процесс включения потребует значительных усилий. То же самое касается и выключения. Поэтому для этих целей используются компактные слаботочные устройства, позволяющие с высокой частотой выполнять циклы включения-выключения. Таким образом, слабый ток подается на катушку, а уже потом осуществляется запуск мощного электродвигателя.

Каждый контактор модульный разделяется по типу привода его в действие. В этом случае также можно отметить различные варианты:

  • Электромагнитный привод считается основным, именно он заложен в принципе действия большинства устройств. При подаче напряжения происходит включение, а при отсутствии напряжения прибор отключается. После полного отключения, включение нужно выполнять повторно, что обеспечивает дополнительную безопасность при работе с электроустановками.
  • Контактная группа может быть приведена в движение с помощью пневматических устройств. Такая система, предназначенная для коммутации, не требует электромагнитного привода. Управляющая команда подается импульсом высокого давления. Подобные системы применяются для локомотивов железных дорог, и других установках с пневматикой.

Любой контактор модульный КМ в зависимости от модификации, может быть смонтирован разными способами:

  • Специализированные устройства, в том числе и без корпусов, не имеют каких-либо дизайнерских ограничений и устанавливаются исключительно с позиций нормальной функциональности и безопасной эксплуатации.
  • Существуют конструкции, создаваемые в индивидуальном порядке под конкретную электроустановку. Они не подходят для бытовых условий, поскольку размещаются в специально отведенных местах.
  • При стандартном монтаже модульный контактор и его подключение осуществляются на ДИН-рейку в щитке, вместе с другими устройствами.

Существуют различия и в соответствии с номинальным напряжением основной цепи. В этом случае контактор КМ может входить в группу устройств, работающих с напряжением 220 и 440 вольт или в группу с напряжением 380 и 660 В. Прибор, бывает однополюсный, а также двухполюсный и с большим количеством полюсов – до 5 единиц.

Управление светом с нескольких мест

Задача простая: выключать свет или от входа в квартиру или, например, из спальни. Тут нам понадобится импульсное реле, которое меняет состояние, получая импульс 230В от любого источника. Вот схема работы:

В этой схеме два импульсных реле, потому что свет квартиры висит на двух разных фазах, их надо подключать через разные реле. Либо можно использовать импульсное реле с двумя группами контактов. На мастер-выключатели подаётся 230В, они подают импульс на реле для изменения состояния. Мастер-выключателей в этой схеме может быть и больше, сколько угодно.

Можно один из мастер-выключателей заменить за карточный выключатель, а другой на считыватель ключей, это как удобнее.

Можно в качестве устройства управления поставить кодонаборную клавиатуру, на которой надо набрать 4- или 5-значный код для включение-выключения света, но это уже менее удобно.

37,373 просмотров всего, 65 просмотров сегодня

4+ Я занимаюсь проектированием систем Умный Дом, слаботочных систем, электрики. Описание задач и вопросы можно присылать на mail@home-matic.ru. Подробнее (в частности, стоимость) можно прочитать .

Особенности схем

Из иллюстраций, на которых показано, как устроен контактор, очевидно, что в нем нет какой-либо защиты. Но эксплуатировать схемы, в которых нет хотя бы плавких предохранителей, недопустимо. Особенно при наличии несварных и неспаянных соединений проводов и кабелей. В соединениях, выполненных с использованием метизов, при ослаблении прилегания контактов лавинообразно увеличивается переходное сопротивление. И, как следствие этого, нагрев токопроводящей жилы, расплавление изоляции, короткое замыкание и, возможно, воспламенение чего-либо.

Подобное ухудшение контакта может быть в любом электротехническом изделии, в котором провод прижимается винтом. Если этим изделием будет автоматический выключатель, в котором имеется тепловая защита, он отключится из-за нагревания корпуса. Однако контактор или магнитный пускатель такой защиты не имеют. Поэтому регулярный периодический осмотр и плавкие предохранители — единственная мера противодействия таким неисправностям.

Схема с контакторами (магнитными пускателями) всегда дополняется защитными элементами. В электроприводах, в которых эти коммутаторы находят самое широкое применение, такими элементами являются тепловые реле. Пример схемы электропривода с использованием контактора и тепловых реле показан далее.

1 — автоматический выключатель;

2 — кнопочная станция (альтернативное название «кнопочный пост»);

3 — дополнительные контакты (в данной схеме — магнитного пускателя);

4 — основные контакты (в данной схеме — магнитного пускателя);

5 — катушка магнитного пускателя;

6 — элементы термореле;

7 — трехфазный двигатель.

Виды магнитных пускателей

Главные операции, реализуемые пускателем, – это запуск, остановка и реверс. Встречаются конструкции, оснащенные такими дополнительными функциями, как клавиши управления освещением, два типа пуска, лампочка, загорающаяся, когда прибор включен, и контроллеры перенапряжения, применяемые в полупроводниковых системах. В продаже можно найти также устройства, оборудованные дополнительными контактными элементами (вмонтированными в прибор или прилагающимися в качестве отдельной приставки), выполняющими функции блокировки или сигнализации.

По критерию того, где монтируется прибор, выделяются следующие виды:

  • закрытые – размещаются в помещениях с низким содержанием пылинок в воздухе, при этом строжайшим условием является исключение попадания влаги на корпус прибора или внутрь;
  • открытые – помещаются вертикально на рейках, в закрытых шкафчиках, в других защищенных от пылинок и воды местах внутри помещений;
  • непроницаемые для пыли и дождевых брызг – могут монтироваться не только в помещениях, но и на улице (но непременно под навесом, хорошо защищающим устройство от ливневых дождей и прямых лучей солнца).

Некоторые модели оборудованы тепловым реле с функцией регуляции тока несрабатывания.

Магнитный пускатель с тепловым реле

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп».  Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

Кнопки могут быть в одном корпусе или в разных

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Сюда можно подать питание для катушки

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

Подключение контактора с катушкой на 220 В

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса

И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1

Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже

Обратите внимание, что

Схема включения магнитного пускателя с кнопками

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Питание для двигателя или любой другой нагрузки  (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.

Принцип работы теплового реле

В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин

Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test . Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop . Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Функционировать тепловое реле может в ручном и автоматическом режиме

С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset

Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset . Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector