Радиация: какие нормы безопасны?
Содержание:
- Измерение уровня облучения радиацией
- Допустимые дозы радиации
- Все радиоактивные вещества обязательно светятся
- Применение ионизирующих излучений
- Как измеряется радиация
- Опасные дозы облучения
- Общий радиационный фон
- Таблетки от радиации
- Виды радиационного фона
- Диагностика
- Откуда появляется природная радиация?
- Действующие нормы радиационного фона
- Единицы измерения
- Чем опасны радиоактивные камни?
- Источники ионизирующего излучения
- Защита от облучения
- Увеличение радиации
- Места обязательного мониторинга
- Виды дозиметров
- Фукусима, Япония
- Источники радиации вокруг нас
- Бета-распад.
Измерение уровня облучения радиацией
Человек испытывает на себе влияние излучения повсеместно. Радиоактивная доза в определенном количестве присутствует в организме всегда. Когда норма излучения в организме превышена во много раз, может наступить смерть.
Уровень радиации – это максимально допустимая дозировка фонового уровня ионизирующего излучения (измеряется в микрозивертах). Допустимый уровень радиации в закрытом помещении составляет 25 мкР/ч. Единица излучения радиации – микрозиверты в час. Вероятность развития рака резко повышается, если человек облучился дозой радиации свыше 11.42 МкЗв/час. Более половины людей, облучившихся дозой свыше 570.77 МкЗв за один раз, умирает за 3-4 недели. Предельно допустимый уровень излучения от источников естественного происхождения считается нормальным в пределах до 0,57 мкЗв/час. Нормальный радиационный фон, исключая влияние радона, составляет 0,07 мк/час.
Особую опасность излучение представляет для лиц, чья профессиональная деятельность предполагает постоянное столкновение с облучением. Мероприятия по предупреждению облучения среди медперсонала сводятся к установлению допустимого предела излучения.
Предельно допустимая концентрация (ПДК) радиоактивного излучения рассчитывается исходя из данных о виде и периоде распада ионизирующих частиц.
Если человек регулярно соприкасается с радиоактивными элементами, ему необходимо знать о том, как себя защитить. Разработаны и внедрены в практику допустимые уровни загрязнения одежды и средств защиты после дезинфекции. Максимально допустимый уровень загрязнения отражен в таблице ниже.
Объект загрязнения | Число частиц в 1 минуту | |||
Альфа-излучение | Бета-излучение | |||
До очистки | После очистки | До очистки | После очистки | |
Руки | 75 | фон | 5000 | фон |
Белье и полотенца | 75 | фон | 5000 | фон |
Спецодежда из хлопчатобумажной ткани | 500 | 100 | 25000 | 5000 |
Одежда из пленки | 500 | 200 | 25000 | 10000 |
Обувь | 500 | 200 | 25000 |
Существует средняя суточная норма для человека. Она равна 0,0027 млЗв / в сутки.
С этим читают
Допустимые дозы радиации
- допустимый уровень радиоактивного излучения от естественных источников излучения, иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем
0,57 мкЗв/час
В последующие года, радиационный фон должен быть не выше 0,12 мкЗв/час
предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников, является
1 мЗв/год
Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.
Все радиоактивные вещества обязательно светятся
Частичная правда
Все, что так или иначе связано с радиоактивным свечением специалисты называют радиолюминесценцией, и это не считается каким-то чрезвычайно распространенным явлением. Причем, оно по обыкновению вызывается не свечением самих радиоактивных материалов, а происходит при взаимодействии излучаемой радиации с окружающими материалами.
Еще в 1920–1930-х годах, на пике публичной заинтересованности в радиоактивных материалах, в различные бытовые приборы, лекарства и во многое другое, в том числе и в краску для стрелок в часах и окраски циферблата добавляли немного радия. В основном эту краску составляла основа сульфида цинка, смешанная с медью. Примеси радия испускали радиоактивное излучение, а при взаимодействии с краской светились зеленым.
Применение ионизирующих излучений
Ионизирующие излучения применяются в различных отраслях:
В технике
- Интроскопия (в том числе для досмотра багажа и людей в аэропортах).
- Стерилизация медицинских инструментов, расходных материалов и продуктов питания.
- «Вечные» люминесцентные источники света широко использовались в середине XX века в циферблатах приборов, подсветке специального оборудования, ёлочных игрушках, рыболовецких поплавках и тому подобном.
- Датчики пожара (задымления).
- Радиоизотопные сигнализаторы обледенения
- Агрегаты (высоковольтные блоки) системы запуска авиадвигателей
- Датчики и счётчики предметов на принципе перекрытия предметом узкого гамма- или рентгеновского луча.
- Некоторые виды изотопных генераторов электроэнергии. См. Бета-вольтаический элемент питания (англ.)русск..
- Ионизация воздуха (например, для борьбы с пылью в прецизионной оптике или облегчения пробоя в автомобильных свечах зажигания).
- Нейтронно-трансмутационное легирование полупроводников.
В медицине
См. также: Ядерная медицина, Радиотерапия и Радиохирургия
- Для получения картины внутренних органов и скелета используются рентгенография, рентгеноскопия, компьютерная томография.
- Для лечения опухолей и других патологических очагов используют лучевую терапию: облучение гамма-квантами, рентгеном, электронами, тяжёлыми ядерными частицами, такими как протоны, тяжёлые ионы, отрицательные π-мезоны и нейтроны разных энергий.
- Введение в организм радиофармацевтических препаратов, как с лечебными, так и с диагностическими целями.
В аналитической химии
- Радиоактивационный анализ путём бомбардировки нейтронами и анализа характера и спектра наведённой радиоактивности.
- Анализ веществ с использованием спектров поглощения, испускания или рассеяния гамма- и рентгеновских лучей. См. рентгеноспектральный анализ, рентгенофлуоресцентный анализ.
- Анализ веществ с использованием обратного рассеяния бета-частиц.
Как измеряется радиация
Радиоактивность окружающего пространства напрямую влияет на состояние здоровья. Даже находясь у себя дома, человек может подвергаться негативному воздействию. Особенно опасны квартиры, в которых имеется посуда, изготовленная из кранового стекла, отделочные материалы с добавлением гранита или старая радиационная краска
При таких обстоятельствах важно периодически измерять радиационный фон. Выявить опасный фон помогут специальные приборы – радиометры или дозиметры
Для эксплуатации в жилом помещении используют дозиметр. При помощи радиометра легко можно определить фон продуктов питания.
Сегодня существуют специальные организации, которые предоставляют услуги по определению радиационного заражения. Специалисты помогут выявить и утилизировать источники фона.
Можно приобрести и домашний дозиметр. Но быть на 100% уверенным в показаниях такого прибора нельзя. При его использовании необходимо строго следовать инструкции и не допускать контакта устройства с исследуемыми объектами. Если уровни радиации в помещениях окажутся недопустимыми, следует обратиться за помощью к профессионалам как можно скорее.
Опасные дозы облучения
Все, что превышает верхнюю границу нормы, уже относится к опасным. Если оно продолжается из года в год, человек привычно не придает симптомам значения. Непосредственную угрозу представляет собой уровень в 3 тыс. мЗв. Человек лысеет, теряет способность к продолжению рода, а уже тысяча способна привести к лучевой болезни. На фоне 3,5–5 тыс. можно умереть за месяц.
В лесу
Десятитысячная отметка мЗв/час означает гарантированно смертельную дозу. Хотя и это понятие условное, поскольку было отмечено, что эта цифра превышения нормы может зависеть от индивидуальных особенностей человеческого организма.
Общий радиационный фон
В результате получается, что радиационный фон составляет около 3 300 мкЗв в год без учета воздействия медицинских процедур (0,38 мкЗв в час) и 3 900 мкЗв с учетом воздействия медицинских процедур. Но надо учитывать, что эти значения сильно зависят от условий местности, высоты и т.д., поэтому везде свой радиационный фон.
Опасен ли рентгеновский снимок и полет на самолете
Безопасным считается уровень радиации примерно до 0,5 мкЗв в час. Но люди могут без особого вреда своему здоровью переносить излучение в 10 мкЗв в час в течение нескольких часов. Поэтому полет на самолете, который дает дополнительно 5 мкЗв в час, не причиняет особого вреда человеку, однако больше 72 часов в месяц летать не рекомендуется. Поглощённая доза облучения, накапливаемая в организме в течение жизни, не должна превышать 100 000 -700 000 мкЗв.
Стоит ли опасаться рентгена? Если делать его раз в год, то доза радиации получается малой по сравнению с воздействием остальных источников радиации, и организм может ее перенести. Особенно если исследование производится современным оборудованием, которое создает минимальную дозу облучения от 30 мкЗв. И зачастую рентген позволяет избежать гораздо большего зла, чем может причинить эта процедура.
Чего действительно стоит опасаться, так это высокой концентрации радона в помещениях, поэтому их необходимо хорошо проветривать, особенно в тех местностях, где его концентрация повышена.
Таблетки от радиации
Человеческий организм более чем на три четверти состоит из воды, так что основное действие ионизирующего излучения — радиолиз (разложение воды). Образующиеся свободные радикалы вызывают лавинный каскад патологических реакций с возникновением вторичных «осколков». Кроме того, излучение повреждает химические связи в молекулах нуклеиновых кислот, вызывая дезинтеграцию и деполимеризацию ДНК и РНК. Инактивируются важнейшие ферменты, имеющие в своем составе сульфгидрильную группу — SH (аденозинтрифосфатаза, сукциноксидаза, гексокиназа, карбоксилаза, холинэстераза). При этом нарушаются процессы биосинтеза и энергетического обмена, из разрушенных органелл в цитоплазму высвобождаются протеолитические ферменты, начинается самопереваривание. В группе риска в первую очередь оказываются половые клетки, предшественники форменных элементов крови, клетки желудочно-кишечного тракта и лимфоциты, а вот нейроны и мышечные клетки к ионизирующему излучению довольно устойчивы.
Виды радиационного фона
Их необходимо знать, чтобы суметь оценить, где и когда могут встречаться дозы, смертельные для организма человека.
Виды фона:
- Естественный. В дополнение к внешним источникам, в организме есть внутренний источник – природный калий.
- Технологически измененный естественный. Его источники – природные, однако искусственно обработанные. Например, это могут быть извлеченные из недр земли природные ископаемые, из которых впоследствии были изготовлены стройматериалы.
- Искусственный. Под ним понимают загрязнение земного шара искусственными радионуклидами. Начал формироваться с развитием ядерного оружия. Составляет 1-3% от естественного фона.
Существуют списки городов России, в которых количество лучевых воздействий стало аномально высоким (из-за техногенных катастроф): Озерск, Северск, Семипалатинск, посёлок Айхал, город Удачный.
Диагностика
Появление лучевой болезни выявляется на основании первичных признаков
Пристальное внимание уделяется пациентам, которые побывали в ситуации, когда превышена безопасная доза радиации
Степень тяжести поражения определяется в ходе исследования образцов крови пострадавшего. Выясняется наличие анемии, ретикулоцитопении, лейкопении, СОЭ.О наличии лучевой болезни говорят признаки кровотечения в миелограмме. В дополнение к исследованию крови проводят следующие диагностические мероприятия:
- Забор соскобов кожных язв и проведение микроскопии.
- ЭЭГ.
- УЗИ брюшной полости.
- УЗИ щитовидной железы.
- УЗИ органов таза.
Одновременно с этим проводятся консультации с узкими специалистами: гематологом, эндокринологом, невропатологом и гастроэнтерологом. Они внимательно изучают клиническую картину болезни и результаты всех обследований.
Откуда появляется природная радиация?
Естественный радиационный фон Земли связан с ее историей и эволюцией биосферы. С момента зарождения нашей планеты она находилась под постоянным влиянием космических излучений. Колоссальное количество космогенных радионуклидов было задействовано при формировании земной коры. Ученые полагают, что тектонические процессы, расплавленная магма, образование горных систем обязаны своим появлением радиоактивному распаду и разогреву недр. В местах разломов, сдвигов и растяжений земной коры, океанических впадин радионуклиды выходили на поверхность и появлялись места с мощным ионизирующим излучением. Образования сверхновых звезд также оказывали влияние на Землю – уровень космического излучения повышался на ней в десятки раз. Правда, сверхновые рождались примерно одни раз в сотни миллионов лет. Постепенно радиоактивность Земли снижалась.
В настоящее время биосфера Земли по-прежнему испытывает воздействие космического излучения, радионуклидов, рассеянных в твердых земных породах, океанах, морях, подземных водах, воздухе и в живых организмов. Совокупность перечисленных составляющих радиационного фона (ионизирующего излучения) принято называть естественным радиоактивным фоном. Естественная радиоактивность включает несколько компонентов:
- космические излучения;
- радиоактивные вещества в составе земных недр;
- радионуклиды в воде, пище, воздухе и стройматериалах.
Естественная радиация является неотъемлемой составляющей природной среды обитания. Честь ее открытия принадлежит французскому ученому А. Беккерелю, который случайно открыл феномен естественной радиоактивности в 1896 году. А в 1912 году австрийский физик В. Гесс открыл космические лучи, сравнив ионизацию воздуха в горах и на уровне моря.
Мощность космического излучения неоднородна. Ближе к поверхности земли она уменьшается за счет экранирующего атмосферного слоя. И, наоборот, в горах она сильнее, поскольку защитный экран атмосферы слабее. Например, в самолете, который летит в небе на высоте 10 000 метров, уровень радиации превышает приземную радиацию почти в 10 раз. Сильнейший источник радиоактивного излучения – Солнце. И здесь атмосфера служит нашим защитным экраном.
Естественный радиационный фон в различных местах мира
Допустимый радиационный фон в разных уголках планеты значительно отличается. Во Франции, например, годовая доза естественного облучения составляет 5 мЗв, в Швеции — 6,3 мЗв, а в нашем Красноярске всего 2,3 мЗв. На золотых пляжах Гуарапари в Бразилии, где ежегодно отдыхает больше 30000 человек, уровень радиации составляет 175 мЗв/год из-за высокого содержания тория в песке. В горячих источниках городка Рам-Сер в Иране уровень радиации достигает 400 мЗв/год. На знаменитом курорте Баден-Бадене также повышенный радиационный фон, как и на некоторых других популярных курортах. Радиационный фон в городах контролируют, но это усредненный показатель. Как не попасть впросак, если вы не хотите подвергать здоровье испытанию повышенной дозой естественных радионуклидов? Индикатор радиоактивности станет вашим надежным экспертом в путешествиях.
Действующие нормы радиационного фона
Радиация в повседневной жизни
Нормы радиации являются усредненными, полученными по результатам клинических исследований больных, получивших дозы радиации различного уровня. Полученные суммарные дозы люди могут получать за разные промежутки времени. Чем больше сила излучения, тем опаснее могут быть последствия и сложнее лечение. Поэтому и определение, что такое нормальный радиационный фон, устанавливается на законодательном уровне и является величиной для регламентирования условий проживания или труда на предприятии.
Правила радиационной безопасности касаются таких категорий граждан:
- военнослужащие, проходящие службу на атомных подводных лодках и надводных кораблях;
- персонал АЭС;
- люди, проживающие на территории с высоким радиационным фоном;
- профессиональные спасатели и работники аварийных бригад, работающие на объектах атомной энергетики;
- работники медицины, которые имеют дело с приборами, содержащими радиоактивные элементы;
- ученые, работающие с радиоактивным материалом.
Предельной границей радиации считается значение, равное 50 микрорентген в час. Однако, если в течение года, получая через равные промежутки времени небольшие дозы излучения, человек получит суммарно 1 рентген, то это будет для него практически безопасно. Радиация постепенно из организма выводится. Действующие сегодня нормы радиоактивной безопасности определяют предельную дозу полученного за жизнь облучения в пределах 60-70 рентген.
Если брать уровень воздействия радиационного фона и гамма-излучения в микрозивертах в час, то допустимой границей безопасности считается:
- просмотр телевизора 3 часа в день на протяжении года (0,005 мЗв);
- длительный перелет на самолете (0,01 мЗв);
- нахождение на открытой местности в солнечную погоду (1 мЗв);
- работа на атомных электростанциях (0,05 мЗв).
Опасной считается доза 11 мкЗв в час. Она повышает риск онкологических заболеваний.
Единицы измерения
Часто можно встретить «радиационный фон в норме составляет 0,5 микрозиверт/час», «норма – до 50 микрорентген в час». Почему единицы измерения разные и как они соотносятся друг с другом. Значение часто может совпадать, например, 1 Зиверт = 1 Грей. Но у многих единиц разное смысловое наполнение.
Всего существует 5 главных единиц:
- Рентен – единица является внесистемной. 1 Р = 1 БЭР, 1 Р примерно равен 0,0098 Зв.
- БЭР – это устаревшая мера измерения того же самого, доза, воздействующая на живые организмы как рентгеновские или гамма-лучи мощностью 1 Р. 1 БЭР = 0,01 Зв.
- Грей – поглощенная. 1 Грей соответствует 1 Джоулю энергии излучения на массу 1 кг. 1 Гр = 100 Рад = 1 Дж/кг.
- Рад – внесистемная единица. Также показывает дозу поглощенной радиации на 1 кг. 1 рад – это 0,01 Дж на 1 кг (1 рад = 0,01 Гр).
- Зиверт – эквивалентная. 1 Зв, составляющий 1Гр равен 1 Дж/1 кг или 100 БЭР.
Для примера: 10 мЗв (миллизивертов) = 0,01 Зв = 0,01 Гр = 1 Рад = 1 БЭР = 1 Р.
Чем опасны радиоактивные камни?
К признакам предшествующего облучения относят не только необычно яркую окраску камня, но и не совсем характерный для него цвет, странный рисунок. Не всегда это говорит о том, что минерал бесконтрольно облучали, но насторожиться стоит. К примеру, относительно мелкие бледно-розовые морганиты (одна из разновидностей берилла) могут облагораживаться микродозами соединений радиоактивного элемента цезия. При этом уровень их радиоактивности обычно не превышает 0,19-0,24 мкЗв/ч или 19-24 мкР/ч.
Но, если вы видите перед собой маргонит слишком большого размера и необычно яркой окраски, высока вероятность того, что это опасный для здоровья радиоактивный камень, так как при его обработке применялись бесконтрольные методы облучения.
В норме экспозиционная доза ионизирующего излучения вблизи камня не должна превышать естественный радиационный фон местности, в которой вы находитесь. Обычно это не более 0,10 -0,25 мкЗв/ч или 10 — 25 мкР/ч. Опасным считается уровень радиоактивности минерала, превышающий 0,3 мкЗв/ч или 30 мкР/ч. Такие камни нельзя не только носить на теле, но и держать в доме или рабочем кабинете. Длительно контактируя с кожей, они могут вызвать серьезное ухудшение здоровья, вплоть до образования раковых опухолей в органах, расположенных рядом с местом соприкосновения.
Радиоактивные от природы камни
Большинство необлученных камней и минералов для человека безопасны. Но встречаются экземпляры с повышенной радиоактивностью, которые держать при себе и носить на теле опасно для здоровья. В частности, к ним относятся:
- Целестин (сульфат стронция). Чаще встречается в продаже в виде не ювелирных, а интерьерных украшений.
- Циркон (силикат циркония). Не стоит приобретать этот камень на черном рынке или в магазине с сомнительной репутацией, если у вас нет при себе дозиметра радиации.
- Гелиодор (разновидность берилла). Чем темнее и крупнее этот камень, тем выше вероятность исходящей от него опасности.
Уровень радиоактивности этих минералов не всегда превышает норму, но проверить приобретаемые образцы дозиметром не помешает.
Измерение радиоактивности камней как способ защиты
Продавцы украшений с радиоактивными камнями не всегда обманывают покупателей намеренно. Зачастую они не осознают опасности, которая исходит от такого товара. Даже будучи в курсе того, что минерал облучался, многие остаются в полном неведении относительно последствий такого облагораживания. Причины: отсутствие специальных знаний и образования, непонимание самой сути этого явления. Да и как доказать, что товар, который вы покупаете, носить опасно?
Без специальных приборов сделать это действительно невозможно. Именно поэтому многие ювелиры и работающие с камнями умельцы всегда имеют при себе портативный радиационный дозиметр. Он помогает измерить мощность дозы ионизирующего излучения рядом с интересуемым предметом. В данном случае – в непосредственной близости к декоративному камню.
С дозиметром работают так. Вначале проводят измерение радиационного фона помещения на удалении от предполагаемого источника радиации. Желательно сделать замеры в нескольких местах и высчитать средний показатель. Затем приступают к проверке мощности дозы излучения, которое исходит от камней. Если уровень их радиоактивности соответствует фону, значит, все нормально. Если фиксируется устойчивое превышение уровня естественного фона помещения, от камня стоит немедленно избавиться.
Источники ионизирующего излучения
Природные источники ионизирующего излучения:
- Спонтанный радиоактивный распад радионуклидов.
- Термоядерные реакции, например, на Солнце.
- Индуцированные ядерные реакции в результате попадания в ядро высокоэнергетичных элементарных частиц или слияния ядер.
- Космические лучи.
Искусственные источники ионизирующего излучения:
- Искусственные радионуклиды.
- Ядерные реакторы.
-
Ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение
Рентгеновский аппарат как разновидность ускорителей, генерирует тормозное рентгеновское излучение.
).
Наведённая радиоактивность
Многие стабильные атомы в результате облучения и соответствующей индуцированной ядерной реакции превращаются в нестабильные изотопы. В результате такого облучения стабильное вещество становится радиоактивным, причём тип вторичного ионизирующего излучения будет отличаться от первоначального облучения. Наиболее ярко такой эффект проявляется после нейтронного облучения.
Цепочка ядерных превращений
В процессе ядерного распада или синтеза возникают новые нуклиды, которые также могут быть нестабильны. В результате возникает цепочка ядерных превращений. Каждое превращение имеет свою вероятность и свой набор ионизирующих излучений. В результате интенсивность и характер излучений радиоактивного источника может значительно меняться со временем.
Защита от облучения
Если вы при помощи собственного дозиметра заметили, что радиационный фон в Москве или Московской области повышен, то первым делом нужно обратиться:
- в службу радиоактивной безопасности «Радон»;
- к оперативному дежурному Главуправления по гражданской обороне и ЧС Москвы;
- в Центр государственного санэпиднадзора Москвы, отдел радиологии.
Затем следует плотно заняться своей безопасностью:
- оградить себя временной преградой от излучения;
- использовать специальные средства защиты;
- немедленно покинуть зону с повышенным радиационным фоном в Москве, постараться проводить там поменьше времени.
Напомним простые средства, которые вас защитят от облучения:
- альфа — обычный бумажный лист;
- бета — стекло;
- гамма — свинец;
- нейтроны — вода.
Увеличение радиации
Естественный радиационный фон частично изменяется человечеством в ходе совершенствования технологических процессов, производства различных материалов, и, соответственно, увеличивается излучение. В качестве примера стоит выделить использование газа и угля, материалов с увеличенным количеством нуклидов, полеты на воздушных суднах. Степени излучения, отмечаемые при этом, именуются возросшим технологическим фоном радиоактивного воздействия. Люди во всем мире все чаще используют для бытовых потребностей множество устройств, товаров и предметов, которые содержат радионуклидные частицы. Относятся к подобным товарам оптические специализированные приборы, святящиеся часы, устройства, используемые при досмотре на таможенной границе и в аэропортах.
Места обязательного мониторинга
Если опустить необходимость замеров на военных объектах, атомных станциях и самолётах, то получается – замеры происходят во многих сферах жизнедеятельности человека. И это разумно, особенно с учётом появления новых источников радиационного излучения. Замеры проводятся в лесах, горных районах, жилых домах и промышленных объектах. Не будет лишним провести такую операцию и при приобретении какой-нибудь недвижимости. Начиная застройку и при сдаче объекта в эксплуатацию также проводят такие процедуры.
Про детские сады, больницы, школы и говорить не стоит. Подводя итог, можно говорить о том, что практически во всех сферах жизни проводится контроль нормы радиации и излучения для человека (мкР/ч).
Виды дозиметров
Дозиметры для определения присутствия радиоактивных частиц разделяют по видам. Приборы различают по способу и условию применения.
Перечень видов:
- Бытовые. Устройства такого типа используют для измерения уровня радиации дома. С их помощью возможно проверить воздух в помещении, продукты и воду. Однако бытовые дозиметры отличаются высокой погрешностью. Они способны определить лишь наличие гамма-лучей. Современные модели оснащены способностью улавливать другие радиоактивные волны.
- Профессиональные. Дозиметры этой группы отличаются мощностью. Модели используют для выявления радиации внутри помещения и снаружи. Аппарат способен определять наличие радиоактивных частиц в продуктах, разных предметах, тканях живых организмов.
- Индивидуальные. Прибор используется для определения накопленного излучения у человека. Внешним видом напоминает часы, работает на руке.
- Промышленные. Устройства этого вида устанавливают на больших предприятиях для контроля уровня радиации, своевременного обнаружения повышения показателей.
- Военные. Дозиметры используют в случае боевых действий. Устройства допустимо применять в центре ядерного взрыва.
Дозиметры также различают по спектру действий. В зависимости от предназначения прибора, выделяют несколько групп.
Группы:
- Индикаторы (сигнализаторы). Устройства имеют высокую погрешность и небольшую точность измерений. Отсутствует цифровой экран. При обнаружении радиоактивных элементов раздается звуковой либо световой сигнал.
- Измерительные. Приборы используют для определения уровня вредного излучения. Присутствует цифровой, либо аналоговый экран, который отображает показатели исследования.
- Поисковые. Приборы этой группы применяют для обнаружения радиоактивных зон. Показатели рассчитываются с высокой точностью. Оснащены выносными детекторами для получения правильного результата.
В зависимости от условий подбирают наиболее подходящий прибор. Для домашнего применения не требуется использование серьезных устройств.
Фукусима, Япония
Одной из наиболее тяжелых ядерных катастроф в мире стало землетрясение 2011 года в Японии, которое вызвало цунами, охватившее побережье и затронувшее атомную электростанцию Фукусима-1. Япония — одна из стран с самой высокой сейсмической активностью в мире. Так что нам определенно стоит задуматься, где не нужно строить атомные электростанции.
Карта радиационного заражения
Природная катастрофа, ставшая причиной аварии, не повлекла за собой человеческих жертв, однако огромная территория больше не пригодна для жизни. Энергия, выпущенная во время землетрясения, была эквивалентна взрыву 200 миллионов тонн динамита. Кроме того, уровень радиации в пищевых продуктах после аварии превысил установленный законный максимум в 27 раз. К счастью, радиоактивность в этом районе постепенно сходит на нет.
Источники радиации вокруг нас
Доза облучения, которую мы получаем от источников ионизирующего излучения:
- Техногенные аварии, атомные станции, ядерные испытания – около 1 %.
- Продукты питания и напитки – 4 %.
- Естественная радиация, излучаемая присутствующими вокруг радионуклидами, – 5 %.
- Космическая (солнечная) радиация – 5 %.
- Медицинские обследования – 25 %.
- Вдыхание радиоактивного газа радона – 60 %.
Таким образом, самую большую дозу облучения мы получаем не в медицинских кабинетах и не в результате давно прошедших техногенных аварий, а в собственных домах и на рабочих местах.
А вы проверяли свою среду индикатором радиоактивности? Уверены, что вашему здоровью ионизирующее излучение не угрожает?
Внутреннее облучение радоном
Этот фактор действует исподтишка, он неощутим, но от этого не менее опасен. Естественный радиоактивный газ радон в больших количествах образуется в толще земли вследствие распада природных радионуклидов. Один из двух его изотопов испускает радиоактивные частицы. Они попадают в организм при дыхании, облучая его изнутри. Больше всего радона скапливается в наших квартирах. Он поступает туда:
- во время работы газовой плиты;
- с водой из артезианских источников, поступающей в дом по системе водопровода;
- с воздухом из лифтов, которые засасывают радон из подвалов помещений подобно большим поршням;
- через строительные материалы с радиоактивными элементами.
Самое большое количество радона вдыхают владельцы загородных одноэтажных коттеджей и дачники. Газ накапливается в подвалах, откуда через щели перекрытий и зазоры поднимается выше – в жилые помещения дома. Если вы живете в коттедже и пользуетесь водой из артезианской скважины, проверьте датчиком радона, фон в вашей ванной, включив предварительно горячую воду. Нередко превышение концентрации радона фиксируется уже через 5 минут.
Проблема загрязнения помещений радоном осложняется тем, что большая часть территории России находится в зоне холодного климата. Люди стараются держать окна закрытыми, чтобы сберечь тепло, «запирая» при этом радиоактивный газ изнутри. Немногие знают, что снизить его концентрацию до безопасного уровня помогает обычное частое проветривание.
Бета-распад.
Бета-распад наблюдается как у тяжелых, так и у легких ядер, например, у трития. Эти легкие частицы (быстрые электроны) обладают более высокой проникающей способностью. Так, в воздухе b-частицы могут пролететь несколько десятков сантиметров, в жидких и твердых веществах – от долей миллиметра до примерно 1 см. В отличие от a-частиц, энергетический спектр b-лучей не дискретный. Энергия вылетающих из ядра электронов может меняться почти от нуля до некоторого максимального значения, характерного для данного радионуклида. Обычно средняя энергия b-частиц намного меньше, чем у a-частиц; например, энергия b-излучения 228Ra составляет 0,04 МэВ. Но бывают и исключения; так b-излучение короткоживущего нуклида 11Ве несет энергию 11,5 МэВ. Долго было неясно, каким образом из одинаковых атомов одного и того же элемента вылетают частицы с разной скоростью. Когда же стало известно понятно строение атома и атомного ядра, появилась новая загадка: откуда вообще берутся вылетающие из ядра b-частицы – ведь в ядре никаких электронов нет. После того как в 1932 английский физик Джеймс Чедвиком открыл нейтрон, отечественные физики Дмитрий Дмитриевич Иваненко (1904–1994) и Игорь Евгеньевич Тамм и независимо немецкий физик Вернер Гейзенберг предположили, что атомные ядра состоят из протонов и нейтронов. В таком случае b-частицы должны образоваться в результате внутриядерного процесса превращения нейтрона в протон и электрон: n p + e. Масса нейтрона немного превышает суммарную массу протона и электрона, избыток массы, в соответствии с формулой Эйнштейна E = mc2, дает кинетическую энергию вылетающего из ядра электрона, поэтому b-распад наблюдается, в основном, у ядер с избыточным числом нейтронов. Например, нуклид 226Ra – a-излучатель, а все более тяжелые изотопы радия (227Ra, 228Ra, 229Ra и 230Ra) – b-излучатели.
Оставалось выяснить, почему b-частицы, в отличие от a-частиц, имеют сплошной спектр энергии, это означало, что одни из них обладают очень малой энергией, а другие – очень большой (и при этом движутся со скоростью, близкую к скорости света). Более того, суммарная энергия всех этих электронов (она была измерена с помощью калориметра) оказалась меньше, чем разность энергии исходного ядра и продукта его распада. Снова физики с толкнулись с «нарушением» закона сохранения энергии: часть энергии исходного ядра непонятно куда исчезала. Незыблемый физический закон «спас» в 1931 швейцарский физик Вольфганг Паули, который предположил, что при b-распаде из ядра вылетают две частицы: электрон и гипотетическая нейтральная частица – нейтрино с почти нулевой массой, которая и уносит избыток энергии. Непрерывный спектр b-излучения объясняется распределением энергии между электронами и этой частицей. Нейтрино (как потом оказалось, при b-распаде образуется так называемое электронное антинейтрино ) очень слабо взаимодействует с веществом (например, легко пронзает по диаметру земной шар и даже огромную звезду) и потому долго не обнаруживалось – экспериментально свободные нейтрино были зарегистрированы только в 1956 г. Таким образом, уточненная схема бета-распада такова: n p + . Количественную теорию b-распада на основе представлений Паули о нейтрино разработал в 1933 итальянский физик Энрико Ферми, он же предложил название нейтрино (по-итальянски «нейтрончик»).
Превращение нейтрона в протон при b-распаде практически не изменяет массу нуклида, но увеличивает заряд ядра на единицу. Следовательно, образуется новый элемент, смещенный в периодической таблице на одну клетку вправо, например: , , и т.д. (одновременно из ядра вылетают электрон и антинейтрино).