Принцип работы солнечного коллектора, как выбрать для дома

Содержание:

Гелиоустановки для систем горячего водоснабжения и отопления

Большое распространение и популярность приобрели именно солнечные коллекторы, которые применяются в качестве устройства для нагрева какой-либо жидкости (чаще всего, воды) с целью ее использования в системах горячего водоснабжения или отопления.

Другой вид оборудования для преобразования энергии солнца – батареи, которые принципиально отличаются от коллекторов тем, что сначала вырабатывают и аккумулируют электрическую энергию, а в дальнейшем ее можно использовать для хозяйственных нужд.

Но данный вид получения и переработки солнечной энергии требует приобретения дорогостоящего оборудования, главными конструктивными единицами которого являются фотоэлементы, что не всегда оправданно, особенно в регионах с небольшим количеством солнечных дней в году.

В отличие от них, солнечные коллекторы для нагрева воды или отопления дома имеют быструю окупаемость, особенно если изготовить их самостоятельно, так как в этом случае расходы составят лишь стоимость материалов, в число которых дорогие фотоэлементы не входят.

Использование солнечных коллекторов имеет очевидные преимущества:

  • снижение затрат на отопление и подогрев воды для системы горячего водоснабжения;
  • экологичность данного вида энергии.

Чаще всего использование коллекторов оправданно для использования в системах отопления небольших коттеджей или организации горячего водоснабжения в летний период в загородном доме или на даче. Оправдан солнечный коллектор для бассейна в качестве устройства для подогрева воды.

Объясняется это относительно невысоким КПД таких установок, который может значительно уменьшаться в пасмурные дни.

Поэтому для оптимизации расходов на отопление частного дома лучше всего использовать коллекторы совместно с традиционным оборудованием, которое изначально может быть рассчитано для этого, либо имеет возможности для переоборудования или согласования параллельного функционирования двух систем теплоснабжения.

Также стоит отметить, что, кроме регулярного обслуживания и очистки поверхности коллекторов от грязи и мусора, некоторые из них не предназначены для работы при низких температурах, поэтому перед началом зимы их нужно законсервировать, предварительно слив из системы теплоноситель.

Основные разновидности солнечных коллекторов

Солнечный коллектор представляет собой устройство, главной функцией которого является превращение поглощенной солнечной энергии в тепловую с целью ее дальнейшего использования для нагрева теплоносителя в системах отопления, в том числе и в «теплых полах» и ГВС дома.

КПД коллектора напрямую зависит от двух факторов: типа устройства и его площади, поэтому нередко для его монтажа выбирается крыша здания.

Солнечные коллекторы условно можно классифицировать, используя разные критерии. Прежде всего, они делятся по типу теплоносителя на:

  • водяные (жидкостные);
  • воздушные.

По уровню предельных температур коллекторы бывают:

  • низкотемпературными – предел до 50°C, средний показатель 35-45 °C;
  • среднетемпературными до 80°C;
  • высокотемпературными – более 80°C.

Последние чаще всего являются промышленными образцами, сделать их своими руками не представляется возможным.

Конструктивно солнечные нагреватели воды могут быть:

  • плоскими, которые могут быть как воздушными, так и жидкостными;
  • вакуумными, использующими в качестве теплоносителя воду или иной вид жидкости;
  • трубчатыми – бывают и жидкостными, и воздушными;
  • термосифонными, или так называемыми накопительными интегрированными коллекторами, главным отличием которых является способность не только нагревания жидкости, но и поддержания ее температуры определенное время.

Последний вариант является самым простым как по устройству, так и по сложности изготовления и представляет собой несколько теплоизолированных емкостей с водой, а нагрев жидкости происходит через стеклянные крышки баков.

Данный тип коллекторов можно считать и самым простым в обслуживании, так как для того, чтобы он работал, необходимо лишь периодически очищать крышку емкости, но использовать его в холодное время года невозможно.

Плоские воздушные коллекторы тоже довольно просты и имеют вид специальной панели в виде герметичной коробки с теплоприемником с подключенными воздуховодами, по которым движется и нагревается воздух.

Для повышения эффективности их работы требуется увеличение их площади, например, за счет использования нескольких панелей в одной системе, а также использование вентилятора.

Способы подключения к системе отопления

Поскольку устройства на солнечной энергии не могут обеспечить стабильное и круглосуточное снабжение энергией, необходима система устойчивая к этим недостаткам.

Для средней полосы России солнечные устройства не могут гарантировать стабильный приток энергии, поэтому используются как дополнительная система. Интегрирование в существующую систему отопления и горячего водоснабжения отличается для солнечного коллектора и солнечной батареи.

Схема с водяным коллектором

В зависимости от целей использования теплового коллектора применяются разные системы подключения. Вариантов может быть несколько:

  1. Летний вариант для горячего водоснабжения
  2. Зимний вариант для отопления и горячего водоснабжения

Летний вариант наиболее простой и может обходится даже без циркуляционного насоса, используя естественную циркуляцию воды.

Вода нагревается в солнечном коллекторе и за счет теплового расширения поступает в бак-аккумулятор или бойлер. При этом происходит естественная циркуляция: на место горячей воды из бака засасывается холодная.

Зимой при отрицательных температурах прямой нагрев воды не возможен. По закрытому контуру циркулирует специальный антифриз, обеспечивая перенос тепла от коллектора к теплообменнику в баке

Как любая система основанная на естественной циркуляции работает не очень эффективно, требуя соблюдения необходимых уклонов. Кроме того, аккумулирующий бак должен быть выше чем солнечный коллектор. Чтобы вода оставалась как можно дольше горячей бак необходимо тщательно утеплить.

Если Вы хотите действительно добиться максимально эффективной работы солнечного коллектора, схема подключения усложниться.

Чтобы ночью коллектор не превратился в радиатор охлаждения необходимо прекращать циркуляцию воды принудительно

По системе солнечного коллектора циркулирует незамерзающий теплоноситель. Принудительную циркуляцию обеспечивает насос под управлением контроллера.

Контроллер управляет работой циркуляционного насоса основываясь на показаниях как минимум двух температурных датчиков. Первый датчик измеряет температуру в накопительном баке, второй – на трубе подачи горячего теплоносителя солнечного коллектора.

Как только температура в баке превысит температуру теплоносителя, в коллекторе контроллер отключает циркуляционный насос, прекращая циркуляцию теплоносителя по системе. В свою очередь при понижении температуры в накопительном баке ниже заданной включается отопительный котел.

Новым словом и эффективной альтернативой солнечным коллекторам с теплоносителем стали системы с вакуумными трубками, с принципом действия и устройства которых мы предлагаем ознакомиться.

Схема с солнечной батареей

Было бы заманчиво применить схожую схему подключения солнечной батареи к электросети, как это реализовано в случае солнечного коллектора, накапливая поступившую за день энергию. К сожалению для системы электроснабжения частного дома создать блок аккумуляторов достаточной емкости очень дорого. Поэтому схема подключения выглядит следующим образом.

При снижении мощности электрического тока от солнечной батареи блок АВР (автоматическое включение резерва) обеспечивает подключение потребителей к общей элетросети

С солнечных панелей заряд поступает на контроллер заряда, который выполняет несколько функций: обеспечивает постоянную подзарядку аккумуляторов и стабилизирует напряжение. Далее электрический ток поступает на инвертор, где происходит преобразование постоянного тока 12В или 24В в переменный однофазный ток 220В.

Увы, наши электросети не приспособлены для получения энергии, могут работать только в одном направлении от источника к потребителю. По этой причине вы не сможете продавать добытую электроэнергию или хотя бы заставить счетчик крутиться в обратную сторону.

Использование солнечных батарей выгодно тем, что они предоставляют более универсальный вид энергии, но при этом не могут сравнится по эффективности с солнечными коллекторами. Однако последние не обладают возможностью накапливать энергию в отличие от солнечных фотоэлектрических батарей.

Изготовление солнечного водонагревателя с медным абсорбером

Предлагаемый к изготовлению гелиоколлектор в зимний солнечный день разогревает воду до температуры выше 90 °C, а в пасмурную погоду — до 40 °С. Этого хватит, чтобы обеспечить дом горячей водой. Если же вы хотите отапливать солнечной энергией жилище, то потребуется несколько таких установок.

Необходимые материалы и инструмент

Для изготовления водонагревателя понадобятся:

  • листовая медь толщиной не менее 0,2 мм размерами 0,98×2 м;
  • медная трубка Ø10 мм длиной 20 м;
  • медная трубка Ø22 мм длиной 2,5 м;
  • резьба 3/4˝ — 2 шт;
  • заглушка 3/4˝ — 2 шт;
  • припой мягкий SANHA или ПОС-40 — 0,5 кг;
  • флюс;
  • химреактивы для чернения абсорбера;
  • плита OSB толщиной 10 мм;
  • уголки мебельные — 32 шт;
  • базальтовая вата толщиной 50 мм;
  • листовой теплоотражающий утеплитель толщиной 20 мм;
  • рейка 20х30 — 10м;
  • дверной или оконный уплотнитель — 6 м;
  • оконное стекло толщиной 4 мм или стеклопакет 0,98х2,01 м;
  • саморезы;
  • краска.

Кроме этого, подготовьте такие инструменты:

  • электрическая дрель;
  • набор свёрл по металлу;
  • «коронка» или фреза для работы по дереву Ø20 мм;
  • труборез;
  • газовая горелка;
  • респиратор;
  • малярная кисть;
  • набор отвёрток или шуруповёрт;
  • электрический лобзик.

Для опрессовки контура также понадобится компрессор и манометр, рассчитанный на давление до 10 атмосфер.

Для пайки мягким припоем подойдёт простая газовая горелка

Инструкция по ходу работ

  1. При помощи трубореза медную трубку нарезают на куски. Получатся 2 части Ø22 мм длиной 1,25 м и 10 элементов Ø10 мм длиной 2 м.
  2. В толстых трубах делают отступ от края 150 мм и выполняют по 10 сверлений Ø10 мм через каждые 100 мм.
  3. В полученные отверстия вставляют тонкие трубки так, чтобы они выступали внутрь не более чем на 1–2 мм. В противном случае в радиаторе будут появляться излишние гидравлические сопротивления.
  4. Используя газовую горелку, термофен и припой, все части радиатора соединяют между собой.

  5. По диагоналям радиатора к трубам 3/4˝ попарно припаивают заглушки и резьбы.
  6. Закрыв выходную резьбу заглушкой, на вход собранного коллектора навинчивают штуцер и присоединяют компрессор.

  7. Помещают радиатор в ёмкость с водой и компрессором нагнетают давление 7–8 атм. По поднимающимся в местах стыков пузырькам судят о герметичности паяных соединений.
  8. После проверки герметичности радиатор сушат и обезжиривают. Затем приступают к припаиванию медного листа. Паять полотно абсорбера к трубкам следует сплошным швом по всей длине каждого элемента медного контура.

  9. Поскольку абсорбер гелиоколлектора изготавливается из меди, то вместо покраски можно использовать химическое чернение. Это позволит получить на поверхности настоящее селективное покрытие, наподобие того, что получают в заводских условиях. Для этого в ёмкость для проверки герметичности наливают нагретый химический раствор и укладывают абсорбер лицевой стороной вниз. Во время реакции поддерживают температуру реактивов любым доступным способом (например, постоянной прокачкой раствора через ёмкость с кипятильником).

  10. Из листа OSB вырезают детали для сборки корпуса гелиоколлектора — днище 1х2 м, боковые стороны 0,16х2 м, верхнюю 0,18х1 м и нижнюю 0,17х1 м панели, а также 2 опорные перегородки 0,13х0,98 м.
  11. Рейку 20х30 мм нарезают на части: 1,94 м — 4 шт. и 0,98 м — 2 шт.
  12. В боковых стенках делают отверстия Ø20 мм для входного и выходного патрубков, а в нижней части коллектора выполняют 3–4 сверления Ø8 мм для микровентиляции.

  13. В перегородках делают вырезы под трубки абсорбера.
  14. Из реек 20х30 мм собирают опорную раму.
  15. Воспользовавшись мебельными уголками и саморезами, раму обшивают панелями OSB. При этом боковые стенки должны опираться на днище — это позволит предотвратить прогиб корпуса. Нижнюю панель опускают на 10 мм от остальных, чтобы перекрыть её стеклом. Это не даст осадкам попадать внутрь рамы.
  16. Устанавливают внутренние перегородки.

  17. Днище и бока корпуса утепляют минеральной ватой и укрывают рулонным теплоотражающим материалом.

  18. Абсорбер укладывают на подготовленное пространство. Для этого демонтируют одну из боковых панелей, которую затем ставят на место.

  19. На расстоянии 1 см от верхнего края короба внутренний периметр сооружения обшивают деревянной рейкой 20х30 мм так, чтобы стенок касалась её широкая сторона.
  20. По периметру проклеивают уплотнительную резинку.

  21. Укладывают стекло или стеклопакет, контур которого также обклеивают оконным уплотнителем.
  22. Прижимают конструкцию алюминиевым уголком, в котором предварительно сверлят отверстия для саморезов. На этом этапе сборку коллектора считают завершённой.

Чтобы предотвратить попадание влаги и утечку тепла, на всех этапах стыки и места сопряжений деталей обрабатывают силиконовым герметиком. Для защиты конструкции от осадков древесину покрывают специальным составом и окрашивают эмалью.

Как сделать своими руками

При наличии свободного времени и умении работать с ручным инструментом, плоский солнечный коллектор можно изготовить самостоятельно, для это потребуются:

  • шланг для воды темного цвета(черного);
  • циркуляционный насос, оснащенный электрическим двигателем с рабочим напряжением 220,0 Вольт;
  • фасонная арматура (для подключения к насосу и бассейну);
  • какой-либо материал, имеющийся в наличии, из которого можно изготовить подложку или ящик –короб, служащий для размещения шланга, скрученного в улитку.

При наличии пиломатериалов (обрезная доска, фанера, листы OSB) из них делается ящик, внутренняя поверхность которого окрашивается в черный цвет.

Во внутренне пространство укладывается шланг в виде спирали, при этом для его закрепления могут быть использованы хомуты или клипсы, предназначенные для водопроводных труб.

В боковых стенках прорезаются отверстия, через которые выводятся концы шланга.

Один конец подключается к циркуляционному насосу, а второй выводиться в бассейн.

Для обеспечения нагрева воды в заданном диапазоне в автоматическом режиме, в цепь питания двигателя циркуляционного насоса можно установить пускатель, во вторичную цепь которого следует включить датчик температуры. Сам датчик следует разместить в бассейне.

Коллектор Станилова: «солнечное отопление» в доме

Установки для отопления дома или решения проблем горячего водоснабжения (полного или частичного), собираемые на основе чертежей изобретателя из Болгарии С. Станилова, относятся к универсальным конструкциям, работа которых основана на парниковом эффекте.

Поэтому солнечные лучи, попадая в замкнутое и герметично изолированное пространство, не имеют выхода, что и порождает термосифонный эффект, при котором нагретая жидкость в трубках начинает свое движение вверх, вытесняя при этом жидкость с более низкой температурой к месту нагрева.

Основным преимуществом работы такой установки является то, что накопленная ей энергия не теряется, а аккумулируется и сохраняется определенное время.

Представляет собой конструкцию трубчатого типа, заключенную в специальную деревянную раму. Как правило, одновременно применяется два коллектора в союзе с накопителем и аванкамерой.

Для изготовления радиатора-коллектора используются стальные трубки, которые обязательно соединяются сваркой. Поэтому применение медных или алюминиевых изделий, особенно при изготовлении конструкции своими руками, представляется проблематичным.

Для соединения коллектора с накопительной емкостью рекомендуется использовать также стальные трубы диаметром от 3/4 до 1 дюйма.

Элементы установки и особенности монтажа

Для изготовления солнечного водонагревателя своими руками также потребуются:

  1. деревянная рама;
  2. стекло для изготовления светопрозрачной крышки;
  3. оргалит или металлический лист для дна коллектора, который впоследствии обязательно потребуется теплоизолировать;
  4. усилитель для днища, в роли которого можно использовать брус с размерами не более 30?50 мм;
  5. металлические трубки, из которых будет свариваться радиатор коллектора из расчета, что для изготовления одного требуется в среднем 15 единиц при длине 1,60 м;
  6. теплоотражатель, для изготовления которого вполне пригоден оцинкованный лист;
  7. соединительные муфты и хомуты;
  8. теплоизоляционные материалы (пенопласт, минеральная вата и любые другие).

Потребуется и накопительный бак, для которого в зависимости от потребностей и мощности самого коллектора используются емкости от 150 до 400 л. В принципе, можно установить не один бак, а несколько, суммарным объемом соответствующих расчетному.

Обязательно емкости следует теплоизолировать, например, изготовив для них специальный утепленный короб, установить который можно не только на крыше здания, но и на чердаке.

Функции аванкамеры, составного элемента данной конструкции, сводятся к созданию избыточного давления, составляющего не менее 80-100 мм рт. ст. Она представляет собой емкость объемом 30-40 л, оснащенную поплавковым клапаном, обеспечивающим ее работу в автономном режиме.

При монтаже аванкамеры обязательно должно соблюдаться условие, при котором уровень жидкости в ней превышал бы уровень воды в накопителе на 0,8-1,1 м, кроме того, располагаться они должны в непосредственной близости друг от друга.

Короб, в котором будет располагаться коллектор, должен обязательно теплоизолироваться, а для уменьшения теплопотерь внешние его стороны рекомендуется окрашивать в белый цвет, стеклянная крышка обязательно должна быть герметичной.

Сами трубы и днище должны иметь селективный слой краски для увеличения светопоглощающей способности.

Как работает солнечный коллектор?

Установку коллектора предпочтительнее выполнять на южной стороне скатной крыши, на плоской кровле его следует монтировать под углом от 35° до 45°. Далее можно приступать к заполнению системы.

После этого аванкамеру нужно соединить с водопроводным вводом и открыть кран для снижения уровня воды. Как только сработает поплавковый клапан, расходный кран закрывают. Нагретая вода поступает в верхнюю часть накопителя, откуда она уже может отбираться, а ее место заполняет новая порция холодной.

Регулирует этот процесс поплавок, который и запускает процесс долива воды в систему, как только уровень в аванкамере снизится. Для того чтобы исключить возможность обратной отдачи тепла используется вентиль, который следует перекрывать ночью или в пасмурные дни.

Непосредственно к сантехническим приборам вода подключается с обязательным использованием смесителей, так как пиковые значения температур могут достигать 70 °C и даже выше.

Коллектор Станилова

Инженер Станислав Станилов представил миру самую универсальную конструкцию солнечного коллектора. Основной идеей использования разработанного им устройства является получение тепловой энергии за счет создания парникового эффекта внутри коллектора.

Конструкция коллектора

Конструкция этого коллектора очень проста. По сути, это солнечный коллектор из стальных труб, сваренных в радиатор, который помещён в деревянный контейнер, защищённый теплоизоляцией. В качестве теплоизоляционного материала могут выступать минеральная вата, пенопласт, понополистирол.

На дно коробки кладется оцинкованный металлический лист, на который монтируется радиатор. И лист, и радиатор окрашиваются в чёрный, а сама коробка покрывается белой краской. Разумеется, контейнер накрывается стеклянной крышкой, которая хорошо герметизируется.

Материалы и детали для изготовления

Для сооружения такого самодельного солнечного коллектора для отопления дома понадобится:

  • стекло, которые будет служить в качестве крышки. Размер его будет зависеть от габаритов короба. Для хорошей эффективности лучше подбирать стекло размером 1700 мм на 700 мм;
  • рама под стекло – её можно сварить самостоятельно из уголков или сколотить из деревянных планок;
  • доска для короба. Тут можно использовать любые доски, даже с разборки старой мебели или дощатого пола;
  • прокатный уголок;
  • соединительная муфта;
  • трубы для сборки радиатора;
  • хомуты для крепления радиатора;
  • лист оцинкованного железа;
  • приёмная и выпускная труба радиатора;
  • бак объемом 200−300 литров;
  • аквакамера;
  • теплоизоляция (листы пенопласта, пенополистирола, мин. вата, эковата).

Этапы работ

Этапы изготовления коллектора Станилова своими руками:

  1. Из досок сколачивается контейнер, дно которого укрепляется брусьями.
  2. На дно укладывается теплоизолятор. Основание должно быть особенно тщательно утеплено, чтобы избежать утечки тепла у теплообменника.
  3. После на дно короба устраивают оцинкованную пластину и устанавливают радиатор, который сваривается из труб, и закрепляют его стальными хомутами.
  4. Радиатор и лист под ним окрашиваются в черный цвет, а короб – в белый или серебристый.
  5. Бак с водой должен быть установлен под коллектором в теплом помещении. Между ёмкостью для воды и коллектором нужно устроить теплоизоляцию, чтобы трубы находились в тепле. Бак можно поместить в большую бочку, в которую можно засыпать керамзит, песок, опилки и т.д. и таким образом утеплить.
  6. Над баком нужно установить аквакамеру для того чтобы в сети создавалось давление.
  7. Монтаж солнечного коллектора своими руками нужно осуществлять на южной стороне кровли.
  8. После того как все элементы системы готовы и установлены, нужно соединить их в сеть полудюймовыми трубами, которые должны быть хорошо утеплены, дабы уменьшить теплопотери.
  9. Неплохо будет соорудить и контроллер для солнечного коллектора своими руками, так как заводские устройства эксплуатируются недолго.

Солнечные коллекторы для отопления дома: разновидности установок

По конструктивному исполнению солнечные коллекторы могут быть плоскими или вакуумными. Последний вариант является более распространенным типом, который характеризуется простотой монтажа, высокой эффективностью, способностью обеспечить необходимым количеством тепла весь дом. Вакуумный солнечный коллектор для отопления дома, цена которого превышает стоимость плоского изделия, представлен сложной конструкцией, которую можно использовать для полноценного обогрева помещения и нагрева воды в любой сезон года.

По типу конструкции солнечные коллекторы бывают вакуумными и плоскими

Существует особый тип установки, который называется коллектор-концентратор. Он представляет собой систему параболических отражателей, которые располагаются на одной криволинейной поверхности, где концентрируется в определенных точках солнечный свет. Для получения максимального эффекта необходимо изменять вслед за движением солнца положение устройства, которое может находиться в двух плоскостях.

В зависимости от теплоносителя различают жидкостные и воздушные конструкции. В первом случае используется дистиллированная вода или антифриз, а во втором – нагретый воздух.

По варианту применения теплоносителя различают пассивные и активные системы. В первом варианте солнечный коллектор используется совместно с баком накопителем. Такая система приемлема для горячего водоснабжения и не комплектуется дополнительными инженерными элементами. Активный вариант предполагает установку солнечного коллектора и других технических устройств, таких как насос, бак-накопитель, защитные клапаны, дополнительные приборы нагрева теплоносителя. Такая система может применяться и для горячего водоснабжения, и для отопления дома.

По виду использования коллекторы могут быть пассивными и активными

Способ передачи тепла может быть косвенным или прямым. Первый вариант предполагает наличие аккумулирующего бака, в котором выполняется передача тепловой энергии, полученной наружным контуром от солнечного излучения, внутреннему контуру, циркулирующему в системах отопления и ГВС. В прямоточных системах, которые применяются для горячего водоснабжения, циркуляция воды в контуре коллектора происходит под воздействием разности температур и благодаря наличию дополнительных элементов в виде клапанов и кранов.

Классификация солнечных коллекторов для отопления по температуре нагрева теплоносителя

Воздушные или водяные солнечные коллекторы для отопления дома можно классифицировать по степени нагревания его рабочих органов и теплоносителя. В зависимости от этого критерия различают низко-, средне- и высокотемпературные установки. Низкотемпературные варианты способны обеспечить нагрев теплоносителя до 50 °С. Такие тепловые коллекторы используются для подогревания воды в душевых летом, в емкостях для полива, для создания комфортных условий в прохладные весенне-осенние вечера.

Среднетемпературные системы обеспечивают нагрев теплоносителя до 80 °С. Такие установки употребляются для обогрева помещений, для бассейнов. Солнечные коллекторы данной категории наиболее целесообразно устанавливать при обустройстве частного дома. Высокотемпературные системы способны нагреть теплоноситель до температуры 250-300 °С. Такие устройства рекомендуется использовать в промышленных масштабах. Их применяют для обогрева коммерческих зданий, производственных цехов и других технологических помещений.

Высокотемпературные системы предполагают сложный процесс преобразования и передачи тепловой энергии. Конструкции имеют внушительные габариты, требующие много свободного пространства для их монтажа. Процесс изготовления системы является весьма трудоемким и затратным, что связано с использованием специализированного оборудования. Самостоятельно выполнить такой вариант не удастся.

По температуре нагрева коллекторы классифицируются на низко-, средне- и высокотемпературные

ТОП-4: Azuro Spiral 1,2х0,8х0,4 м по цене 17409 рублей

Технические параметры

  • Габариты – 800х1200х400 мм;
  • Поверхность – 0,96 м. кв;
  • Объем бассейна — 15 м. куб.

При каскадной конструкции панелей, образованный четырьмя коллекторами, есть возможность нагрева воды для бассейнов объемом до 30 м. куб.

Обзор

Система подогрева Spiral, выпускаемая в Чехии фирмой Mountfield, прекрасно дополнит бассейн, предоставив его посетителям комфортные условия, т.е. теплую воду, за которую не придется платить.

Установка

Чтобы собрать установку, не нужны специальные навыки. Достаточно подсоединить его к централизованной системе подачи воды.

Специальные ножки, входящие в комплектацию, предназначены для того, чтобы устройство можно было наклонять под нужным углом, который составляет к солнцу 30 градусов. Это повышает его эффективность.

Принцип действия

Из бассейна откачивается насосами холодная вода. Она подается на фильтровальную установку, а оттуда – на солнечную панель. Последняя, нагретая лучами, отдает ей свое тепло. После этого, теплая ода возвращается в бассейн.

Приобрести

Где приобрести Цена в рублях РФ
https://www.epool.ru/good/30647?utm_source=yandex.market&utm_medium=cpc_reg&utm_campaign=1001501&utm_term=30647&utm_content=21348069&_openstat=bWFya2V0LnlhbmRleC5ydTvQmtC-0LvQu9C10LrRgtC-0YAg0YHQvtC70L3QtdGH0L3Ri9C5IEF6dXJvIFNwaXJhbCAxLDLRhTAsONGFMCw0INC8O2NSMGhZcUVXRnFTaWQ3NUgtVVpHTEE7&ymclid=240458096879985468200017 17409
https://www.egazon.ru/good/30647 17409
http://grandeza-pool.ru/shop/nagrev/solnechnye-kollektory/kollektor-solnechnyi-azuro-spiral-12kh08kh04-m/ 37366
http://kupibas.ru/catalog/bassejny-fontany-prudy/solnechnye-kollektory/119546/ 20667
https://kpool.ru/magazin/uhod/podogrev-vody-v-bassejne/kollektor-solnechnyj/kollektor-solnechnyj-azuro-spiral-1-2×0-8×0-4-m.html 19943

Принцип работы и виды солнечных коллекторов

Настала пора сказать несколько слов об устройстве и принципе работы солнечного коллектора. Основным элементом его конструкции является адсорбер, представляющий собой медную пластину с приваренной к ней трубой. Поглощая тепло падающих на нее солнечных лучей, пластина (а вместе с ней и труба) быстро нагревается. Это тепло передается циркулирующему по трубе жидкому теплоносителю, а тот в свою очередь транспортирует его далее по системе.

Способность физического тела поглощать или отражать солнечные лучи зависит, прежде всего, от характера его поверхности. Например, зеркальная поверхность отлично отражает свет и тепло, а вот черная, напротив, поглощает. Именно поэтому на медную пластину адсорбера наносится черное покрытие (простейший вариант – черная краска).

Принцип работы солнечного коллектора

1. Солнечный коллектор.2. Буферный бак.3. Горячая вода.

4. Холодная вода.5. Котроллер.6. Теплообменник.

7. Помпа.8. Горячий поток.9. Холодный поток.

Увеличить количество получаемого от солнца тепла можно и путем правильного подбора стекла, прикрывающего адсорбер. Обычное стекло недостаточно прозрачно. Кроме того, оно бликует, отражая часть падающего на него солнечного света. В гелиоколлекторах, как правило, стараются использовать специальное стекло с пониженным содержанием железа, что повышает его прозрачность. Для снижения доли отраженного поверхностью света на стекло наносят антибликовое покрытие. А чтобы внутрь коллектора не попадали пыль и влага, которые тоже снижают пропускную способность стекла, корпус делают герметичным, а иногда даже заполняют инертным газом.

Несмотря на все эти ухищрения, КПД солнечных коллекторов все же далек от 100%, что связано с несовершенством их конструкции. Часть полученного тепла нагретая пластина адсорбера излучает в окружающую среду, нагревая контактирующий с ней воздух. Чтобы свести к минимуму теплопотери, адсорбер необходимо изолировать. Поиск эффективного способа теплоизоляции адсорбера привел инженеров к созданию нескольких разновидностей солнечных коллекторов, самыми распространенными из которых являются плоские и трубчатые вакуумные.

Плоские солнечные коллекторы

Плоские солнечные коллекторы.

Конструкция плоского солнечного коллектора предельно проста: это металлический короб, покрытый сверху стеклом. Для теплоизоляции дна и стенок корпуса, как правило, используется минеральная вата. Вариант этот далеко не идеален, поскольку не исключен перенос тепла от адсорбера к стеклу посредством воздуха, находящегося внутри короба. При большой разнице температур внутри коллектора и снаружи потери тепла бывают довольно существенными. В результате плоский гелиоколлектор, прекрасно функционирующий весной и летом, зимой становится крайне неэффективным.

Устройство плоского солнечного коллектора

1. Впускной патрубок.2. Защитное стекло.

3. Абсорбционный слой.4. Алюминиевая рама.

5. Медные трубки.6. Теплоизолятор.7. Выпускной патрубок.

Трубчатые вакуумные солнечные коллекторы

Трубчатые вакуумные солнечные коллекторы.

Вакуумный солнечный коллектор представляет собой панель, состоящую из большого количества сравнительно тонких стеклянных трубок. Внутри каждой из них расположен адсорбер. Чтобы исключить перенос тепла газом (воздухом), трубки вакуумированы. Именно благодаря отсутствию газа вблизи адсорберов, вакуумные коллекторы отличаются низкими теплопотерями даже в морозную погоду.

Устройство вакуумного коллектора

1. Теплоизоляция.2. Корпус теплообменника.3. Теплообменник (коллектор)

4. Герметичная пробка.5. Вакуумная трубка.6. Конденсатор.

7. Поглощающая пластина.8. Тепловая трубка с рабочей жидкостью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector