Огнеупорные материалы (изделия) и их огнеупорность

Что это такое

Ответим на вопрос, что это за ткани, которые не горят? К таким материалам прежде всего относится давно известная, используемая при температуре до 500℃, негорючая асбестовая ткань. Изготавливаемая на основе природного слоистого минерала асбеста она не содержит сгораемых органических веществ, поэтому в полном смысле слова является негорючей.

Второй вариант тканей, из которых изготавливается огнеупорная спецодежда для сварки, защитные костюмы для работы в горячих цехах – это натуральные материалы высокой плотности, изготовленные из хлопка, льна.

Например, брезентовая ткань, дополнительную стойкость к непосредственному контакту с открытым огнем, высокотемпературному тепловому воздействию которой придает огнезащитная пропитка различными видами антипиренов.

Эта ткань по своим свойствам огнестойкая, так как способна небольшой период сопротивляться пламени, высокой температуре, что позволяет надежно защитить человека, одетого в спецодежду, изготовленную из нее, в зоне прямого контакта с негативными факторами воздействия.

Кроме этих наиболее известных примеров, существует много других видов как негорючих, так и огнестойких текстильных материалов, используемых в самых различных областях деятельности.

Огнеупорная ткань

4 Аустенитно-ферритные и аустенитные жаростойкие сплавы

Наибольшей востребованностью пользуются аустенитные стали, структура коих обеспечивается наличием никеля, а жаростойкость – наличием хрома. В подобных композициях иногда встречаются незначительные включения ниобия и титана, углерода в них очень мало. Аустенитные марки при температурах до 1000° успешно противостоят процессу появления окалины и при этом относятся к группе антикоррозионных сталей.

Сейчас чаще всего предприятия используют описываемые материалы, относимые к дисперсионно-твердеющей категории. Их делят на два вида в зависимости от варианта применяемого упрочнителя – интерметаллического либо карбидного. Именно процедура упрочнения придает аустенитным сталям особые свойства, так востребованные промышленностью. Известные сплавы данной группы:

  • дисперсионно-твердеющие: 0Х14Н28В3Т3ЮР, Х12Н20Т3Р, 4Х12Н8Г8МФБ, 4Х14Н14В2М (оптимальны для изготовления клапанов двигателей транспортных средств и деталей турбин);
  • гомогенные: 1Х14Н16Б, Х25Н20C2, Х23Н18, Х18Н10T, Х25Н16Г7АР, Х18Н12T, 1Х14Н18В2Б (указанные марки находят свое применение в сфере выпуска арматуры и труб, работающих при больших нагрузках, элементов выхлопных систем, агрегатов сверхвысокого давления).

Аустенитно-ферритные сплавы имеют очень высокую жаропрочность, которая намного больше обычных высокохромистых материалов. Достигается это за счет уникальной стабильности их строения. Такие марки стали нельзя применять для производства нагруженных компонентов из-за их повышенной хрупкости. Зато они прекрасно подходят для изготовления изделий, функционирующих при температурах близких к 1150 °С:

  • пирометрических трубок (марка – Х23Н13);
  • печных конвейеров, труб, емкостей для цементации (Х20Н14С2 и 0Х20Н14С2).

Особенности и технология утепления дымоходов

Технология теплоизоляции дымоходов отличается, в зависимости от типа материалов, из которых они были изготовлены. Связано это с необходимостью учёта их свойств и обеспечением условий для увеличения срока эксплуатации.

Различают следующие технологии утепления дымоходов, в зависимости от материала:

  • для кирпичных;
  • для стальных.

Кирпичные дымоходы

Дымоходы из кирпича выгодно утеплять методом оштукатуривания. Он позволяет не только снизить теплопотери до 25%, но и обеспечить эстетичный вид конструкции. Реализация метода следующая:

  1. В чистой ёмкости с ровной внутренней поверхностью замешивается цементно-песчаный раствор с добавлением извести и шлака. Рекомендуется марка бетона не хуже М500. Шлак перед добавлением нужно просеять и убрать из него лишние примеси. Приготавливается густой раствор для заделки щелей и заполнения швов между рядами кирпичей.
  2. Приготовленный раствор наносится по всей длине трубы и особенно тщательно в месте примыкания к кровле. Задача – заполнить все пустоты и швы.
  3. На незастывший раствор в течение 30 минут после его нанесения укладывается стальная армирующая сетка.
  4. После частичного высыхания первого слоя (50-60 минут), наносится поверх сетки второй слой раствора толщиной 50-70 мм. Если за один раз его нанести не удаётся, то работы выполняются поэтапно за два нанесения.
  5. По истечении 3-5 дней, когда слой застыл, заделываются появившиеся трещины.
  6. Выполняется финишная отделка: наносится штукатурка, которая обрабатывается раствором извести и мела.

Стальные дымоходы

Для утепления стальных дымоходов с круглым сечением необходимо выполнить ряд работ в такой последовательности:

  1. Стальная поверхность очищается от ржавчины и грязи.
  2. Закрепляется базальтовый огнестойкий утеплитель для дымохода: обматывается и фиксируется при помощи стальных хомутов. В месте примыкания к кровле наносится жаростойкий герметик.
  3. На утеплённую конструкцию одевается труба и фиксируется на хомуты.
  4. При использовании готовой конструкции базальтового утеплителя с кожухом, его одевают на трубу, фиксируют правильное положение шипа и паза, а затем фиксируют кожухом. Стыки должны быть без видимых зазоров, а при их наличии – нужно выполнить герметизацию.

Особенности утепления квадратных и прямоугольных дымоходов

Теплоизоляция дымоходов с квадратным и прямоугольным сечением выполняется следующим образом:

  1. По периметру дымохода монтируется стальной или деревянный каркас с такими размерами, чтобы можно внутри него уложить выбранный изоляционный материал. Расстояние от трубы до стенок каркаса должно быть не менее 10 см.
  2. Заполняется пространство внутри каркаса базальтовой ватой так, чтобы оставался воздушный зазор между ней и наружным каркасом. Фиксация утеплителя выполняется на термостойкие герметики.
  3. Лицевая часть обшивается отделочным материалом с креплением к установленному каркасу. Обычно для этих целей используются асбестовые плиты с толщиной стенок 10 мм и более. Стыковочные швы герметизируются жаростойкой штукатуркой.

Работы по утеплению дымохода В некоторых случаях обшивку каркаса выполняют до момента укладки минваты. Это может быть удобно для выполнения крепления обшивки и контроля качества процесса при наличии трубы с большим диаметров. Для небольших в сечении дымоходов укладка утеплителя может быть затруднена при использовании такого метода.

Требования

На момент написания материала не существует национальных стандартов, определяющих производство негорючих, огнестойких тканей, которые плохо горят. Поэтому компании, изготавливающие эту группу текстильных материалов, сами разрабатывают технические условия, в которых регламентирован весь технологический процесс производства.

Кроме того, ТУ являются обязательным документом, предоставляемым компанией изготовителем на сертификационные огневые испытания серийной продукции, необходимые для получения сертификата пожарной безопасности.

Испытание негорючей ткани на воспламеняемость

Требования, методики испытаний, касающиеся основной характеристики – воспламеняемости тканей, изложены в следующих противопожарных нормах:

  • ГОСТ Р 50810-95, классифицирующий декоративные текстильные материалы на основании метода испытаний на воспламеняемость.
  • НПБ 257-2002. В этом документе регламентированы методики испытаний на воспламеняемость, тление, пламенное устойчивое и остаточное горение текстильных материалов – штор, занавесей, постельных принадлежностей, обивки мягкой мебели.

Такие испытания заключаются в воздействиях на отобранные образцы тканей пламенем лабораторной газовой горелки, тлеющей сигаретой; а полученные результаты объективно показывают, как качественно была проведена их противопожарная обработка растворами антипиренов.

Огнеупорные листовые материалы

Листовые огнеупорные материалы также применяются при строительстве печей и каминов. Они используются, для того чтобы прилегающие к камину по бокам стены не перегревались и не спровоцировали пожар.

К таким материалам относят асбест и металл. Первый используется для облицовки огнестойких стен, поскольку выдерживает продолжительный прогрев до 500 градусов, не разрушаясь и не деформируясь.

Стальными пластинами обшиваются области вокруг печной дверцы. Из листовых материалов изготавливаются защитные экраны для топочных конструкций. Они способны снижать температуру поверхности печи на 100 градусов, чем значительно повышают пожаробезопасность.

Виды

Основные различия между видами огнестойких, огнеупорных ват определяет состав исходного сырья для промышленного серийного производства, в большинстве случаев дающий наименование готовой товарной продукции:

  • Базальтовая или каменная минеральная вата – это продукция, получаемая методом центрифугирования или дутья под давлением расплавленной до 1500℃ массы измельченной магматической базальтовой породы через фильеры из трудноплавких металлов, быстрого охлаждения каменных волокон. Такая вата используется для производства огнезащитного базальтового материала.
  • Вата каолиновая или керамическая изготавливается из диоксида кремния – кварцевого песка и глинозема, где содержание оксида алюминия достигает 99%, способом раздува расплавленной массы сырья под давлением до 0,8 Мпа для получения ультратонких волокон, использующихся в качестве эффективной теплоизоляционной продукции.

Технологический процесс производства – расплав сырья ведется в электротермических промышленных печах при температуре 1750℃. Плотность каолиновой ваты варьируется в диапазоне 80–130 кг/м3.

В качестве связующих веществ для формирования из комовой ваты плит, рулонов, скорлуп, сегментов, используемых в строительстве; для облицовки корпусов, емкостей отопительного, высокотемпературного технологического оборудования; участков трубопроводов, по которым перекачиваются горячие продукты, в полученный полуфабрикат добавляют огнеупорную глину, кремнийорганические соединения, жидкое стекло (силикаты), специальные марки глиноземистого цемента.

Чаще всего каолиновую вату называют муллит-кремнеземистой по геологическим названиям исходного сырья, что нашло отражение в маркировках готовой продукции. Так, обычные волокна обозначают МКРР, а волокна с добавлением хромсодержащих соединений – МКРХ.

  • Вата МКРР 130, изготавливаемая по ГОСТ 23619-79, является одной из самых распространенных, востребованных марок каолиновой ваты, так как, кроме термостойких, огнеупорных свойств, химически инертна к воздействию концентрированных кислот, щелочей; является отличным электроизоляционным материалом; обладает эластичностью, за счет чего плотно прилегает к защищаемым поверхностям строительных конструкций, корпусов оборудования, поверхностей трубопроводов, вентиляционных коробов; не деформируется под воздействием вибрационных нагрузок.
  • Кремнеземная огнеупорная вата производится по аналогичным технологическим процессам, что и базальтовые, каолиновые ваты. Содержание чистого диоксида кремния – от 96 до 98%. При высокотемпературном нагреве не способна выделять какие-либо вещества, так как изготавливается без связующих материалов.
  • Стекловата. Сырьем для производства этого теплоизоляционного материала служат отходы стекольной промышленности, бой вторичной стеклотары, а также сырьевой шихты, что применяется для изготовления стекла. Используются два промышленных способа – дутье и протяжка через фильеры.
  • Шлаковата, сырьем для которой являются шлаки металлургических производств.

Виды огнестойкой ваты по месту основного применения такой противопожарной продукции:

  • Огнеупорная вата для дымохода любого отопительного оборудования – от печной трубы в бане, жилом доме до дымоходов газовых колонок, дизель-генераторных станций. Применение огнестойкой ваты позволяет исключить прямой контакт раскаленных поверхностей со строительными конструкциями – перекрытиями, стенами, выполненными из горючих материалов, создать противопожарные разделки, отступки.
  • Огнеупорная вата для печей металлургических предприятий, утилизационных производств позволяет создать отличный теплоизоляционный кожух вокруг корпусов такого высокотемпературного оборудования.
  • Огнеупорная минеральная вата для котлов тепловых, технологических электростанций, котельных эффективно служит таким же целям.

***Свойства огнестойких теплоизоляционных материалов отчасти зависят от формы выпуска готовой продукции, поэтому неудобную ни для перевозки, ни для проведения большинства видов монтажных работ комовую вату прессуют и прошивают базальтовыми (стекловолоконными) нитями в плиты, рулоны, маты; скорлупы для обкладки трубопроводов, в том числе с фольгой, прокладываемой в качестве теплоотражающего слоя.

Волокна базальтовой теплоизоляции в плите негорючей обшивки

Характеристики защитных экранов

Защитными экранами называются специальные щиты, окружающие боковые поверхности корпуса печи и уменьшающие интенсивность жара при его нагревании. Металлические экраны заводского производства изготавливаются из чугуна или стали и представляют собой оснащенные подпорками листы различного размера.

Кирпичные экраны — это противопожарные стены, возводимые вокруг корпуса печки. Если печь выполнена из металла, то кирпичная кладка может окружать все ее боковые поверхности. Если же кирпичный экран не является кожухом печи, его следует располагать на определенном расстоянии и от обогревательного приспособления, и от деревянной стены.

При необходимости можно изготовить кирпичные противопожарные стены своими руками. Для этого потребуются:

  • шамотный (печной) кирпич;
  • уровень;
  • цемент;
  • мастерок;
  • леска.

Кирпичный экран

Противопожарные стены возводятся методом кладки в ½ кирпича, скрепляющим элементом является цемент. Перед началом работ следует определить границы экрана и натянуть леску, вдоль которой будет осуществляться кладка. Вертикальность конструкции выверяется с помощью уровня.

Метки: баня, жаростойкий, материал

« Предыдущая запись

Классификация

Огнеупоры подразделяются на два основных класса – это неформованные материалы и формованные (штучные) изделия.

Формованные огнеупоры

К неформованным огнеупорным материалам относят:

  • Огнеупорные цементы.
  • Бетонные смеси, торкрет-массы высокой стойкости к огню.
  • Разные виды порошков для заправки металлургических печей.
  • Мертели.
  • Пластичные огнеупорные пасты, суспензии.

Формованные огнеупорные изделия, серийно производимые по технологиям горячего, полусухого прессования пластической формовки; литья, включая вибрационное, из расплавов, текучих масс подготовленного сырья; распилом крупных блоков, горных пород, изготавливают:

  • Прямыми, клиновыми различных размеров, форматов.
  • Фасонными различной сложности, массы серийного изделия.
  • Специальными – промышленного или лабораторного назначения. К последним относятся тигли, кюветы, оборудование для проведения исследований в условиях высокой температуры.

Огнеупорные материалы, изделия классифицируют по таким основным параметрам:

  • По физическому состоянию.
  • Химическому составу.
  • Огнеупорности.
  • Плотности, пористости.
  • Форме, размерам, весу.
  • Способам формования.
  • Области применения.

По огнеупорности их подразделяют на четыре группы (класса):

  • Огнеупорные, выдерживающие температуру эксплуатации в диапазоне 1580-1770 ℃.
  • С высокой огнеупорностью – 1770-2000 ℃.
  • С высшей огнеупорностью – 2000-3000 ℃.
  • Сверхогнеупорные – больше 3000 ℃.

По пористости на восемь классов – от особо плотных огнеупоров, открытая пористость которых меньше 3%, высокоплотных – 3-10%, плотных – 10-16%; до ультрапористых, где она превышает 75%.

В зависимости от формы, геометрических размеров, веса огнеупорные изделия классифицируются:

  • Прямоугольными, включая огнеупорные кирпичи стандартных строительных типоразмеров.
  • Фасонными различной конфигурации, включая криволинейную, формы.
  • Листами, рулонами.
  • Погонными изделиями – более 450 мм.
  • Штучными – до 2 кг.
  • Блоками – от 2 кг до 1 т.
  • Крупными блоками – больше 1 т.

По физическому состоянию готовой продукции при поставке заказчикам:

  • Неформованными материалами – сухими, полусухими смесями; жидкими, пластичными готовыми растворами.
  • Штучными изделиями.
  • Строительными огнеупорными конструкциями.

Неформованные огнеупорные материалы также квалифицируют по основным способам нанесения на защищаемые поверхности производственного оборудования, строительных конструкций:

  • Напылению.
  • Обмазке.
  • Литью.
  • Торкретированию.
  • Виброуплотнению.
  • Трамбовке.
  • Прессованию.
  • Пескометной набивке.

Существуют и другие классификации огнеупоров, основанные на способах подготовки сырья, производства неформованных материалов, изготовления штучных изделий, строительных конструкций.

Область применения

Теплостойкие материалы используют для оборудования печи, обшивки стен производственных помещений, возведения приусадебных построек. Малопористые огнеупоры с высокими показателями подходят для конструирования печей в банях, зданиях пищевой промышленности.

Гипсокартон также является одним из огнеупорных материалов

В строительстве жилых помещений применяют листовые изделия. Особенно популярен сейчас гипсокартон. Им обшивают стены, оформляют конструкции сложных форм, возводят полки, межкомнатные перегородки и шкафы. Но этот материал нельзя использовать в помещениях с высоким уровнем влажности, т.к. гипсокартон от воздействия воды размокает. Листовые огнеупоры легко поглощают шум, просто монтируются, обладают минимальным уровнем кислотности.

Для строительства стен подойдёт огнеупорный бетон. Это изделие с высокой пористостью, чаще всего его применяют для теплоизоляции. Материал продаётся в виде порошка. Достаточно смешать порошок с жидкостью, покрыть им строительный материал, из которого возведены стены. Кроме защиты от пожаров, бетон предохранит помещение от проникновения громких звуков и попадания влаги.

Подробнее о новых огнеупорных технологиях:

Баню и другие постройки на участке лучше изготовить из огнеустойчивого кирпича, т.к. обычное строительное сырьё крошится из-за воздействия пара и горячего воздуха. Высокая температура внутри помещения часто приводит к деформации и расширению строительного материала. Кирпич не поддаётся этому воздействию. Производители предлагают сырьё в форме прямоугольника и клина. Первый вариант необходим в строительстве торцевых стен, второй применяют как ребровое изделие.

Баня прослужит дольше, если ее построить из огнеупорного кирпича

Несгораемый материал изготавливают с применением обжига и без него. В первом случае сырьё подвергают воздействию температуры свыше +600°С — только так возможно добиться нужных физических и химических свойств. Огнеупорные порошковые смеси уплотняют, вводя органические или минеральные вязкие вещества.

Применение термостойких бетонов

Жаростойкие бетоны применяются в основном в промышленном строительстве для возведения специальных огнестойких конструкций. Для сооружения конструкций из жаропрочного бетона применяются сборные изделия, произведенные на специализированных предприятиях, либо бетонные жаростойкие смеси изготовленные по месту применения огнеупорных конструкций.

Штучные огнеупорные изделия из жаростойкого бетона

Ввод в эксплуатацию новых бетонных конструкций происходит после достижения жаростойким бетоном проектной прочности — но не ранее 3 суток для изделий на быстротвердеющем цементе, жидком стекле, глиноземистом цементе; и не менее 7 суток для изделий на портландцементе.

Перед нагревом конструкций котлов и агрегатов из жаростойкого бетона, затвердевшие смеси просушивают с целью удаления из их состава свободной воды. А последующий разогрев, в зависимости от вида вяжущих, проводят по специальным режимам, предусмотренным технологической инструкцией для каждого агрегата.

Жаростойкие материалы для отделки стен возле печи: виды

Огнеупорные материалы можно разделить на несколько видов в зависимости от типа сырья:

  • Материалы с органическими элементами, например, пенополистирольные плиты. Показатель огнестойкости не очень высокий, поэтому используются для защиты от небольшого нагрева.
  • Материалы с неорганическими компонентами применяются для изоляции как деревянных стен, так и кирпичных, бетонных. Это каменная вата, базальтовые плиты, стекловолокно, фиброцементные плиты, полипропилен, сотопласты, вермикулитовые панели, вспененный перлит.
  • Материалы смешанного типа: асбестовый картон, асбестоизвестковые и кремнеземные огнеупоры.

Защитные экраны

Защитные экраны для печи

Помимо листовых материалов используются защитные огнеупорные экраны, изолирующие боковые стенки печи и устанавливаемые на расстоянии 1-5 см от ее корпуса. От листов их отличает многослойность структуры. Широко распространены экраны из чугуна , а также из нержавеющей стали, в том числе комбинированные с негорючими плитами во внешнем слое. Отшлифованная зеркальная поверхность стального экрана отражает тепло, обладающего более мягкими и щадящими потоками. Плиты внутри экрана скрепляются при помощи жаростойкой мастики, клея, раствора, герметика, обладающих высокими показателями термоустойчивости. Жаропрочная мастика имеет огнестойкий состав, выдерживающий свыше 1100 градусов, также он устойчив к влаге, обладает бактерицидными свойствами, может применяться как облицовочный раствор. Бывают не только боковые, но и фронтальные экраны. Установка такой огнезащиты производится с помощью крепления к полу около печки, сам экран оборудован специальными ножками. Помимо стальных огнеупорных экранов применяются кирпичные в виде стенки, разделяющей корпус печки от возгораемой поверхности. Экран из кирпича устанавливается на расстоянии от 5 до 15 см от стенок печки, и на таком же расстоянии от возгораемой поверхности. Его высота может достигать потолка, а может быть равной высоте печки.

Обшивка стен

Огнеупорные листовые материалы для печей и каминов

Огнеупорная обшивка стен вокруг печи делится на светоотражающую и с облицовкой. Первый вид обычно состоит из металлических листов с жаропрочными теплоизоляционными материалами. Теплоизоляция крепится к деревянной стене, затем покрывается снаружи листом из нержавеющей стали, отполированной до зеркального блеска. Между обшивкой и деревянной стеной необходимо предусмотреть наличие вентилируемых зазоров размером 2-3 см. При этом огнеупорные листы крепятся через керамические втулки.  В качестве теплоизоляции используются:

  • Минерит
  • Базальтовый картон
  • Асбестокартон

Если печь стоит в небезопасном удалении от стены, можно использовать двойной слой теплоизоляции, которые закрепляются через втулки и покрываются листом.

Обшивка с облицовкой придает защищаемой поверхности эстетический вид. В качестве облицовочного материала часто используется керамическая, терракотовая, клинкерная плитка, керамогранит, который крепится к огнеупору. При этом плитка не служит термоизоляцией. Она крепится сверху жаростойкого листа. Для огнеупорного слоя используются:

  • Огнеупорный гипсокартон – это гипсокартон с добавлением стекловолокна. Устойчив к деформациям и сильному тепловому излучению.
  • Минерит
  • Стекломагниевый лист, изготавливаемый из стеклоткани.

Классификация жаропрочных и жаростойких сплавов

При температуре до 300 ºС используется обычная конструкционная (углеродистая) сталь – прочный и термостойкий металл. Для работы в условиях свыше 350 ºС требуется применение жаропрочных металлов. Основные виды сплавов повышенной термостойкости и термопрочности:

  • Перлитные, мартенситные и аустенитные;
  • кобальтовые и никелевые сплавы;
  • тугоплавкие металлы.

К перлитным жаропрочным сталям относят котельные стали и сильхромы, содержащие малый процент углерода. Температура рекристаллизации материала повышается за счет легирования молибденом, хромом, ванадием. Сплавы характеризуются неплохой свариваемостью. Производство мартенситных сталей осуществляется с использованием перлитных и добавок хрома, закалки при 950–1100 ºС. Они содержат более 0,15 % углерода, 11-17 % хрома, небольшое количество никеля, вольфрама, молибдена, ванадия. Стали мартенситного класса устойчивы к воздействию коррозии в щелочных, кислотных растворах, повышенной влажности, в случае термообработки при 1050 градусах отличается высокой жаропрочностью.

Жаропрочные аустенитные стали могут иметь гомогенную или гетерогенную структуру. В сплаве с гомогенной структурой, не упрочняемых термообработкой, содержится минимум углерода, много легирующих элементов, что обеспечивает сопротивление ползучести. Такие материалы подходят для применения при температуре до 500 °С. В гетерогенных твердых растворах, упрочняемых термообработкой, образуются карбидные, интерметаллидные, карбонитридные фазы, что обеспечивает применение жаропрочных сплавов под напряжением при температуре до 700 °С.

При температуре до 900 °C эксплуатируют никелевые и кобальтовые сплавы: они применяются при производстве турбин реактивных двигателей, являются лучшими жаропрочными материалами. Кобальтовые сплавы по жаропрочности немного уступают никелевым, являются более редкостным. Отличаются высокой теплопроводностью, коррозионной устойчивостью при высоких температурах, стабильностью структуры в процессе длительной работы.

Содержание никеля в никелевом сплаве составляет свыше 55 %, углерода 0,06-0,12 %. В зависимости от структуры различают гомогенные (нихромы), гетерогенные (нимоники) сплавы никеля. Нихромы, изготавливаемые на основе никеля, в качестве легирующей добавки содержат хром. Им свойственна не только жаропрочность, но и высокая жаростойкость. Нимоники состоят из 20 % хрома, 2 % титана, 1 % алюминия. Марки сплавов: ХН77ТЮ, ХН55ВМТФКЮ, ХН70МВТЮБ.

При температурах до 1500 градусов и выше могут работать жаропрочные сплавы из тугоплавких металлов: вольфрама, ниобия, ванадия и др.

Температура плавления тугоплавких металлов.
Металл Температура плавления, ºC
Вольфрам 3410
Тантал Около 3000
Ванадий 1900
Ниобий 2415
Цирконий 1855
Рений 3180
Молибден Около 2600

Наиболее востребованным является молибденовый сплав. Для легирования применяются такие элементы, как титан, цирконий, ниобий. Для предотвращения коррозии выполняют силицирование изделия, в результате чего на поверхности образуется защитное покрытие. Защитный слой позволяет эксплуатировать жаропрочку при температуре 1700 градусов на протяжении 30 часов. Другие распространенные тугоплавкие сплавы: вольфрам и 30 % рения, 60 % ванадия и 40 % ниобия, сплав железа, ниобия, молибдена и циркония, тантал и 10 % вольфрама.

Назначение

Тканевые материала на основе асбеста, из-за его канцерогенных свойств, уже практически не используются при производстве огнезащитных элементов спецодежды пожарных, металлургов, но широко применяются в качестве асбестотехнических, огнестойких теплоизоляционных изделий, в том числе в условиях агрессивных химических сред.

Полиэфирные, а также некоторые разновидности арамидных огнестойких тканей служат исходным материалом изготовления для штор, используемых для сцены театров, клубов; для ресторанов, гостиниц. Везде, где постоянно или регулярно находится много людей, существует возможность контакта драпировок, портьер, занавесов с источниками зажигания.

Мебельные производства также используют такие виды огнестойких тканей в качестве обивки мебели, которую невозможно поджечь упавшей тлеющей сигаретой.

Для рукавиц, входящих в комплекты специальной одежды пожарных, работников горячих цехов металлургических, энергетических производств, используют углеродные, кремнеземные, базальтовые стойкие к огню материалы, а также стеклоткани, являющиеся поверхностным слоем как средств для защиты рук, так и спецодежды в целом.

Специальная одежда, костюмы с огнезащитной обработкой изготавливаются также из льняных, хлопковых тканей высокой плотности, толщины материала.

Используются газо-электросварщиками, кузнецами, работниками котельных, горячих цехов других производств.

Огнестойкие плиты из вермикулита для стен, кровли и дымоходов

Вермикулитовые плиты относятся к огнестойким материалам и выделяются следующими свойствами:

  • Они химически нейтральны.
  • Инертны и не имеют щелочных примесей.
  • Не подвержены коррозии.
  • Могут обрабатываться обычными красками и клеящими веществами.
  • Не требуют при монтаже и эксплуатации никаких защитных мероприятий.
  • В условиях пожара не выделяют токсичных и других вредных веществ.

Плиты из вермикулита

Подобные плиты изготавливаются методом горячего прессования из композиции на основе обожженного вспученного вермикулита, жидкого стекла и неорганических целевых добавок, что при пожаре обеспечивает высочайшую степень огнезащиты любых конструкций (в том числе металлических).

Область применения вермикулита:

  • Защита от воздействия огня несущих металлических конструкций и воздуховодов с пределом огнестойкости 0,75-2,5 часа.
  • Огнезащита деревянных, в том числе несущих строительных конструкций с пределом огнестойкости 0,75-2,5 часа.
  • Повышение предела огнестойкости металлических воздуховодов, шахт, кожухов, гильз, кабелепроводов, противопожарных преград.
  • Используется при изготовлении огнезащитных дверей, клапанов, сейфов, перегородок и подвесных потолков
  • Применяется для конструктивной термозащиты и огнезащиты дымоходов при монтаже каминов, печей и другого энергетического оборудования.

Производство бетонных работ в условиях сухого и жаркого климата

Бетонирование в условиях жаркого климата характеризуется температурой воздуха 35–40°С и относительной влажностью 10–25%, частыми ветрами и высокой солнечной активностью.

При производстве бетонных работ в таких условиях, все эти факторы негативно влияют на состояние бетонной смеси и приводят к обезвоживанию (осушению) бетона, что замедляет процесс гидратации цемента. Прочность бетона в этом случае снижается до 50% в сравнении с бетонными смесями, твердеющими в стандартных температурных условиях.

Укладка бетона в жаркую погоду

Заливка бетона в жару ухудшает капиллярную структуру твердеющей бетонной смеси, что значительно влияет на качество изделия, а впоследствии и на долговечность готовых бетонных конструкций. Резкое обезвоживание бетонных растворов приводит к образованию усадочных трещин, а в период эксплуатации — к шелушению бетонных поверхностей.

Для качественной укладки бетонных смесей в жаркую погоду (см. видео в этой статье), необходимо применять технологические меры по сохранению необходимой консистенции бетонного раствора — вплоть до укладки его в опалубку.

А именно:

  1. В первую очередь, необходимо внимательно отнестись к выбору всех компонентов бетонной смеси. В этих условиях, в качестве вяжущего рекомендуется использовать портландцемент.
  2. В качестве заполнителей должны применяться материалы с одинаковым температурным расширением, и близкие по параметрам к применяемому цементу.
  3. Заполнители перед применением необходимо подвергать влажной обработке.
  4. Для увеличения подвижности бетонной смеси и снижения водоцементного соотношения, в бетонную смесь добавляют пластификаторы.
  5. Время замеса бетонного раствора необходимо увеличить на 35–50%.
  6. Транспортировку готовой бетонной смеси осуществлять только автобетоносмесителями. Причем, в миксер загружают сухую бетонную смесь, а разбавление ее водой происходит только в момент укладки в опалубку. Это снижает риск обезвоживания смеси в период доставки ее на строительный участок.
  7. Перед укладкой бетона необходимо проверить герметичность опалубки, и увлажнить ее внутреннюю поверхность.
  8. Для подачи бетонной смеси к месту укладки, целесообразно использовать бетононасосы или специальные бадьи.
  9. Бетонирование при жаркой погоде обязательно проводить с использованием глубинных вибраторов.
  10. В период набора прочности бетон накрывают увлажненными: мешковиной, рогожей, соломенными матами и др. Каждые 3–4 часа бетонную поверхность поливают водой, а с учетом жаркого климата, время поливки бетона увеличивается до 28 суток.

Уход за бетоном в условиях жаркого климата

Бетоны жаростойкие, приготовленные согласно стандартным технологическим требованиям и установленным нормам, обеспечат вашему жилищу надежную пожарную безопасность и долголетие.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector