Формула электрического сопротивления от а до я для новичков
Содержание:
- Расчет сечения жилы провода в зависимости от длины и нагрузки в линии
- Расчет сечения медных проводов и кабелей
- Что влияет на сопротивление медного провода
- Зачем нужно рассчитывать сопротивление
- Алгоритмы расчета
- Расчет сечения провода по току
- Базовые формулы определения напряжения
- Сопротивление кабелей с бумажной, резиновой и поливинилхлоридной изоляцией на напряжение 6 — 35 кВ
- Проведение измерений сопротивления и какие могут возникнуть нюансы
- Выбор сечения кабелей
- Зачем нужны вычисления
Расчет сечения жилы провода в зависимости от длины и нагрузки в линии
В любой линии связи возникают потери. Линия – жила медного провода имеет определенное сопротивление, зависящее от длины, и, следовательно, по закону Кирхгофа на ней должно упасть напряжение и выделиться определенная мощность. В трансляционных системах в качестве нагрузки используются трансформаторные громкоговорители. Импеданс трансформаторного громкоговорителя Z – сопротивление первичной обмотки трансформатора на частоте 1кГц. Сопротивление нагрузки, линии является частотно зависимой (комплексной) величиной, поэтому в этом случае выполняют элементарный оценочный расчет, для среднегеометрической частоты всего частотного диапазона (большинство производителей импеданс трансформаторного громкоговорителя указывают для частоты 1кГц, что соответствует середине нормативного частотного диапазона 0,2 – 5кГц).
Задачу определения сечения жилы провода будем решать в 2 этапа, используя известное представление линии и нагрузки, в виде резистивного делителя (см. рис.2).
Рис. 2 — Эквивалентная схема подключения нагрузки в конце линии
Первый этап, на котором вся нагрузка сосредоточена в конце линии, позволит упростить решение задачи и перейти ко 2 этапу, на котором будут доопределены коэффициенты, позволяющие рассчитывать сечение жилы провода в распределенной линии с произвольно задаваемыми потерями.
Входные данные для расчета:
Рн – мощность нагрузки в линии, Вт;
Uвх – напряжение на входе линии, В;
L – общая протяженности линии, м.
Для определения сечения жилы провода S, воспользуемся эмпирическими соображениями. Из электроакустики известно, что для сохранения качества передаваемого звукового сигнала, величина потерь по напряжению в линии не должна превышать 10% (данная величина соответствует потерям по мощности примерно 20%, что принято считать нормой), что для резистивного делителя (см. рис. 2), можно записать как: Rл ~ 0,1 Rн, где Rн – сопротивление нагрузки, Ом.
Подставим данное соотношение в формулу (3):
В трансляционных линиях нагрузкой являются трансформаторные громкоговорители. В этом случае в качестве сопротивления нагрузки Rн можно принять значение импеданса громкоговорителя на определенной частоте. Импеданс трансформаторного громкоговорителя Zгр представляет собой частотно-зависимое (комплексное) сопротивление первичной обмотки звукового трансформатора. Большинство производителей трансформаторных громкоговорителей указывают значение импеданса для максимальной мощности на частоте 1кГц.
Импеданс трансформаторного громкоговорителя Zгр можно получить из 2-х известных формул:
- Закона Ома для участка цепи : J = U / R,
- Мощности нагрузки: P = JU.
При использовании в качестве нагрузки нескольких параллельно подключенных трансформаторных громкоговорителей суммарный импеданс Z рассчитывается по формуле:
Формула (7), определяющая проводимость всей цепи, неудобна для расчета суммарного нагрузочного импеданса, особенно, для трансляционной линии с большим количеством громкоговорителей разной мощности. Для расчета суммарного импеданса Z нескольких трансформаторных громкоговорителей удобно использовать формулу (6), в которой Pгр необходимо заменить суммарной мощностью всех трансформаторных громкоговорителей Pн, состоящей из суммы мощностей отдельных громкоговорителей Pi:
Используя в качестве сопротивления нагрузки Rн суммарный импеданс трансформаторных громкоговорителей Z (7) и подставляя (6) в (5), получаем полезную формулу, определяющую сечение жилы провода S в зависимости от мощности нагрузки Рн, напряжения на входе Uвх и длины линии L:
Формула (9) справедлива при потерях в линии, не превышающих 10% и условии, что вся нагрузка сосредоточена в конце линии (формула 8 очень эффективна для протяженных линии (L более 150м). На коротких линиях (L менее 150м) не следует забывать о соотношении сечения и нормы тока (формула 2).
Расчет сечения медных проводов и кабелей
Подсчитав нагрузку и определившись с материалом (медь), рассмотрим пример расчета сечения проводов для отдельных групп потребителей, на примере двухкомнатной квартиры.
Как известно, вся нагрузка делится на две группы: силовую и осветительную.
В нашем случае основной силовой нагрузкой будет розеточная группа, установленная на кухне и в ванной. Так как там устанавливается наиболее мощная техника (электрочайник, микроволновка, холодильник, бойлер, стиральная машина и т.п.).
Для этой розеточной группы выбираем провод сечением 2.5мм2. При условии, что силовая нагрузка будет разбросана по разным розеткам. Что это значит? Например, на кухне для подключения всей бытовой техники нужно 3-4 розетки подключенных медным проводом сечением 2.5 мм2 каждая.
Если вся техника подключается через одну единственную розетку, то сечения в 2.5 мм2 будет недостаточно, в этом случае нужно использовать провод сечением 4-6 мм2. В жилых комнатах для питания розеток можно использовать провод сечением 1.5 мм2, но окончательный выбор нужно принимать после соответствующих расчетов.
Питание всей осветительной нагрузки выполняется проводом сечением 1.5 мм2.
Необходимо понимать, что мощность на разных участках электропроводки будет разной, соответственно и сечение питающих проводов тоже разным. Наибольшее его значение будет на вводном участке квартиры, так как через него проходит вся нагрузка. Сечение вводного питающего провода выбирают 4 – 6 мм2.
При монтаже электропроводки применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ.
Выбор сечения кабеля по мощности
Вот мы добрались и до сути нашей статьи. Однако всё, что было выше, упускать нельзя, а значит и мы умолчать не могли.
Если попытаться изложить мысль логично и по-простому, то через каждое условное сечение проводника может пройти ток определенной силы. Заключение это вполне логичное и теперь лишь осталось узнать эти соотношения и соотнести для разных диаметров провода, исходя из его типоряда.
Также нельзя умолчать, что здесь, при расчете сечения по току, в «игру вступает» и температура. Да, это новая составляющая – температура. Именно она способна повлиять на сечение. Как и почему, давайте разбираться.
Все мы знаем о броуновском движении. О постоянном смещении ионов в кристаллической решетке. Все это происходит во всех материалах, в том числе и в проводниках. Чем выше температура, тем больше будут эти колебания ионов внутри материала. А мы знаем, что ток — это направленное движение частиц.
Так вот, направленное движение частиц будет сталкиваться в кристаллической решетке с ионами, что приведет к повышению сопротивления для тока.
Чем выше температура, тем выше электрическое сопротивление проводника. Поэтому по умолчанию, сечение провода для определенного тока принимается при комнатной температуре, то есть при 18 градусах Цельсия. Именно при этой температуре приведены все справочные значения в таблицах, в том числе и наших.
Несмотря на то, что алюминиевые провода мы не рассматриваем в качестве проводов для электропроводки, по крайней мере, в квартире, тем не менее, они много где применяются. Скажем для проводки на улице. Именно поэтому мы также приведем значения зависимостей сечения и тока и для алюминиевых проводов.
Итак, для меди и алюминия будут следующие показатели зависимости сечения провода (кабеля) от тока (мощности). Смотрите таблицу.
Таблица проводников под допустимый максимальный ток для их использования в проводке:
С 2001 года алюминиевые провода для проводки в квартирах не применяются. (ПЭУ)
Да, здесь как заметил наш читатель, мы фактически не привели расчета, а лишь предоставили справочные данные, сведенные в таблицу, на основании этих расчетов. Но смеем вас замерить, что для расчетов необходимо перелопатить множество формул, и показателей. Начиная от температуры, удельного сопротивления, плотности тока и тому подобных.
Поэтому такие расчеты мы оставим для спецов. При этом необходимо заметить, что и они не являются окончательными, так как могут незначительно разнится, в зависимости от стандарта на материал и запаса провода по току, применяемого в разных странах.
А вот о чем мы еще хотели бы сказать, так это о переводе сечения провода в диаметр. Это необходимо, когда имеется провод, но по каким-то причинам маркировки на нем нет. В этом случае по диаметру провода можно вычислить сечения и наоборот из сечения диаметр.
Что влияет на сопротивление медного провода
Электрический импеданс медного кабеля зависит от нескольких факторов:
- Удельного сопротивления;
- Площади сечения проволоки;
- Длины провода;
- Внешней температуры.
Последним пунктом можно пренебречь в условиях бытового использования кабеля. Заметное изменение импеданса происходит при температурах более 100°C.
Зависимость сопротивления
Удельное сопротивление в системе СИ обозначается буквой ρ. Оно определяется, как величина сопротивления проводника, имеющего сечение 1 м2 и длину 1 м, измеряется в Ом ∙ м2. Такая размерность неудобна в электротехнических расчетах, поэтому часто используется единица измерения Ом ∙ мм2.
Вам это будет интересно Особенности мощности постоянного тока
Важно! Данный параметр является характеристикой вещества — меди. Он не зависит от формы или площади сечения
Чистота меди, наличие примесей, метод изготовления проволоки, температура проводника — факторы, влияющие на удельное сопротивление.
Зависимость параметра от температуры описывается следующей формулой: ρt= ρ20. Здесь ρ20— удельное сопротивление меди при 20°C, α— эмпирически найденный коэффициент, от 0°Cдо 100°C для меди имеет значение, равное 0,004 °C-1, t — температура проводника.
Ниже приведена таблица значений ρ для разных металлов при температуре 20°C.
Таблица удельного сопротивления
Согласно таблице, медь имеет низкое удельное сопротивление, ниже только у серебра. Это обуславливает хорошую проводимость металла.
Чем толще провод, тем меньше его резистентность. Зависимость R проводника от сечения называется «обратно пропорциональной».
Важно! При увеличении поперечной площади кабеля, электронам легче проходить сквозь кристаллическую решетку. Поэтому, при увеличении нагрузки и возрастании плотности тока, следует увеличить площадь сечения
Увеличение длины медного кабеля влечет рост его резистентности. Импеданс прямо пропорционален протяженности провода. Чем длиннее проводник, тем больше атомов встречаются на пути свободных электронов.
Выводы
Последним элементом, влияющим на резистентность меди, является температура среды. Чем она выше, тем большую амплитуду движения имеют атомы кристаллической решетки. Тем самым, они создают дополнительное препятствие для электронов, участвующих в направленном движении.
Важно! Если понизить температуру до абсолютного нуля, имеющего значение 0° Kили -273°C, то будет наблюдаться обратный эффект — явление сверхпроводимости. В этом состоянии вещество имеет нулевое сопротивление
Температурная корреляция
Зачем нужно рассчитывать сопротивление
Рассчитывать сопротивление нужно, чтобы избежать появления короткого замыкания. Резисторы, образующие его, преобразовывают ток в напряжение, ограничивают протекающий электроток и получают заданную величину. Они создают делители напряжения в измерительном оборудовании и решают другие специальные задачи, к примеру, уменьшают радиопомехи.
Рассчитывать сопротивление нужно, чтобы сохранялась работоспособность резисторов и их нормальная регулировочная функция. Если будут находиться в целости резисторы, в которых преобразовывается энергия, то будут работать все электрические приборы.
Защита от короткого замыкания
Алгоритмы расчета
Алгоритм №1 «Расчет сечения жилы провода для равномерно распределенной нагрузки»
- Рассчитаем коэффициент потерь, формула (19).
- Рассчитаем коэффициент распределения, Таблица (2).
- Рассчитаем удельное сопротивление по меди, с учетом температуры, формула (4).
- Рассчитаем суммарную нагрузку в линии, формула (8).
- Подставим полученные значения в формулу (20).
Алгоритм №1 «Расчет потерь по напряжению в существующей линии
- Рассчитаем сопротивление жилы провода, с учетом температуры, формулы (4), (5).
- Рассчитаем суммарную нагрузку в линии, формула (8).
- Рассчитаем сопротивление нагрузки, формула (6).
- Рассчитаем коэффициент распределения, Таблица (2).
- Рассчитаем потери по напряжению, формула (16).
Расчет сечения провода по току
Допустимую токовую нагрузку считают основным нормативом безопасной эксплуатации электросетей. Ее характеризуют как величину, который жила сможет пропускать длительный период времени, не нагреваясь. Сначала высчитывают суммарную мощность приборов, имеющихся или планируемых к установке. Затем рассчитывают силу тока, соответствующую полученным данным. Если рассматривают однофазную сеть 220 В, она составит: I=(PK)/(Ucos ф), где P – сумма мощности оборудования, Вт; K – коэффициент (принимают равным 0,75); U – напряжение, Вт; cos ф – берут равным 1 для бытовой сети.
Имеющийся результат дает возможность при помощи таблиц определить диаметр провода. Если расчетное значение не совпадает с табличным, переходят к ближайшему большему.
При подборе табличных величин понадобится учесть способ прокладки: открыто (на воздухе), скрыто (в земле).
Открытая проводка воспринимает большую токовую нагрузку, чем скрытая. Так, например, для одинаковых значений 42 А при прокладке медного провода по воздуху потребуется сечение 6 мм, в земле – 4 мм.
Базовые формулы определения напряжения
Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.
Через силу тока и сопротивление
Значение | Формула |
Базовый расчёт напряжения на участке цепи | U=I/R, где I — сила тока в Амперах, а R — сопротивление в Омах |
Определение напряжения в цепи переменного тока | U=I/Z, где Z — сопротивление в Омах, измеренное по всей протяженности цепи |
Закон Ома имеет исключения для применения:
- При прохождении токов высокой частоты происходит быстрое изменение электромагнитных полей. При расчёте высокочастотных цепей следует учитывать инерцию частиц, которые переносят заряд.
- При работе цепей в условиях низких температур (вблизи абсолютного нуля) у веществ может возникать свойство сверхпроводимости.
- Нагретый проходящими токами проводник является причиной возникновения переменного сопротивления.
- При нахождении под воздействием высокого напряжения проводников или диэлектриков.
- Во время процессов, проходящих в устройствах на основе полупроводников.
- При работе светодиодов.
Через мощность и силу тока
При известной мощности потребителей и силе тока напряжение высчитывается по формуле U=P/I, где P — мощность в Ваттах, а I — сила тока в Амперах.
При расчётах в цепях переменного тока используется формула иного вида: U=(P/I)*cosφ, где cosφ — коэффициент мощности, зависит от характера нагрузки.
При использовании приборов с активной нагрузкой (лампы накаливания, приборы с нагревательными спиралями и элементами) коэффициент приближается к единице. При расчётах учитывается возможность наличия реактивного компонента при работе устройств и значение cosφ считается равным 0,95. При использовании устройств с реактивной составляющей (электрические двигатели, трансформаторы) принято считать cosφ равным 0,8.
Для проверки расчётов рекомендуется сравнивать результат со стандартным напряжением, которое равняется 220 Вольт для однофазной сети и 380 Вольт — для трёхфазной.
Через работу и заряд
Методика расчёта используется в лабораторных задачах и на практике не применяется.
Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.
Расчёт сопротивления
При работе проводник создает препятствие течению электрического тока, которое называется сопротивлением. При электротехнических расчетах применяется понятие удельного сопротивления, которое измеряется в Ом*м.
Значение | Формула |
Расчет сопротивления одного элемента | R=U/I, где U — напряжение в Вольтах, а I — сила тока в Амперах |
Расчет для однородного проводника | R=(ρ*l)/S, где ρ — значение удельного сопротивления (Ом*м, берётся из таблиц значений), l — длина отрезка проводника (метры), а S — площадь поперечного сечения (м2) |
Последовательное подключение
При последовательном соединении выход элемента связан со входом следующего. Общее сопротивление находится при помощи расчётной формулы: R=R1+R2+…+Rn, где R=R1+R2+…+Rn — значения сопротивления элементов в Омах.
Параллельное подключение
Параллельным называется соединение, при котором оба вывода одного элемента цепи соединены с соответствующими контактами другого. Для параллельного подключения характерно одинаковое напряжение на элементах. Ток на каждом элементе будет пропорционален сопротивлению.
Общее сопротивление высчитывается по формуле: 1/R=1/R1+1/R2+…+1/Rn.
В реальных схемах электропроводки применяется смешанное соединение. Для расчёта сопротивления следует упростить схему, просуммировав сопротивления в каждой последовательной цепи. Затем схему уменьшают путём расчёта отдельных участков параллельного соединения.
Сопротивление кабелей с бумажной, резиновой и поливинилхлоридной изоляцией на напряжение 6 — 35 кВ
3. Справочник по проектированию электроснабжению. Ю.Г. Барыбина. 1990 г. Таблица 2.63, страницы 175-176.
4. Справочная книга электрика. Григорьева В.И. 2004г. Таблицы 3.9.7; 3.9.11; страницы 448-449
Если значения активных и реактивных сопротивлений кабелей, вы не нашли в приведенных таблицах. В этом случае, сопротивление кабеля можно определить по приведенным формулам с подстановкой в них фактических параметров кабелей.
Методика расчета представлена в книге: «Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г, страницы 45-48».
Активное сопротивление кабеля
1. Активное сопротивление однопроволочной жилы, определяется по формуле 2-1, Ом:
где:
- l — длина жилы, м;
- s – поперечное сечение жилы, мм2, определяется по формуле: π*d2/4;
- d – диаметр жилы кабеля;
- α20 – температурный коэффициент сопротивления, равный при 20 °С:
- 0,00393 1/град – для меди;
- 0,00403 1/град – для алюминия;
- ρ20 – удельное сопротивление материала жилы при 20 °С (температура изготовления жилы), можно принять согласно книги «Справочная книга электрика. Григорьева В.И. 2004г.» Таблица 1.14, страница 30.
tж – допустимая температура нагрева жилы, согласно ПУЭ п.1.3.10 и 1.3.12.
2. Активное сопротивление многопроволочной жилы определяется также по формуле 2-1, но из-за конструктивных особенностей многопроволочной жилы, вместо значений ρ20 вводиться в формулу ρр равное:
- 0,0184 Ом*мм2/м – для медных жил;
- 0,031 Ом*мм2/м – для алюминиевых жил.
3. Удельное активное сопротивление жилы, отнесенное к единице длины линии 1 км, определяется из следующих зависимостей, Ом/км:
Индуктивное сопротивление кабеля
1. Удельное реактивное (индуктивное) сопротивление кабеля определяется по формуле 2-8, Ом/км:
где:
- d – диаметр жилы кабеля.
- lср – среднее геометрическое расстояние между центрами жил кабеля определяется по формуле :
где:
- lА-В — расстояние между центрами жил фаз А и В;
- lВ-С — расстояние между центрами жил фаз В и С;
- lС-А — расстояние между центрами жил фаз С и А.
Пример
Определить активное и индуктивное сопротивление кабеля марки АВВГнг(А)-LS 3х120 на напряжение 6 кВ производства «Электрокабель» Кольчугинский завод». Длина кабельной линии L = 300 м.
Решение
1. Определяем поперечное сечение токопроводящей жилы кабеля имеющую круглую форму:
S = π*d2/4 = 3,14*13,52/4 = 143 мм2
Расчет поперечного сечение секторной жилы, а также размеры секторных жил на напряжение 0,4 — 10 кВ представлен в статье: «Расчет поперечного сечения секторной жилы кабеля«.
где: d = 13,5 мм – диаметр жилы кабеля (многопроволочные уплотненные жилы), определяется по ГОСТ 22483— 2012 таблица С.3 для кабеля с токопроводящей жилой класса 2. Класс токопроводящей жилы указывается в каталоге завода-изготовителя кабельной продукции.
Ниже представлена классификация жил кабелей, согласно ГОСТ 22483— 2012:
2. Определяем удельное активное сопротивление кабеля марки АВВГнг(А)-LS 3х120, отнесенное к единице длины линии 1 км, Ом/км:
где:
- l = 1000 м – длина жилы, м;
- α20 – температурный коэффициент сопротивления, равный при 20 °С:
- 0, 00393 1/град – для меди;
- 0,00403 1/град – для алюминия;
- ρр – удельное сопротивление материала многопроволочной жилы, равное:
- 0,0184 Ом*мм2/м – для медных жил;
- 0,031 Ом*мм2/м – для алюминиевых жил;
- tж = 65 °С — допустимая температура нагрева жилы, для кабеля напряжением 6 кВ, согласно ПУЭ п.1.3.10.
3. Определяем удельное активное сопротивление кабеля, исходя из длины кабельной трассы:
где: L = 0,3 км – длина кабельной трассы, км;
4. Определяем среднее геометрическое расстояние между центрами жил кабеля, учитывая что жилы кабеля расположены в виде треугольника.
где:
- lА-В = 20,3 мм — расстояние между центрами жил фаз А и В;
- lВ-С = 20,3 мм — расстояние между центрами жил фаз В и С;
- lС-А = 20,3 мм — расстояние между центрами жил фаз С и А.
Что бы определить расстояние между центрами жил кабеля, нужно знать диаметр жил кабеля d = 13,5 мм и толщину изоляции жил из поливинилхлоридного пластиката dи.ж = 3,4 мм, согласно ГОСТ 16442-80 таблица 4. Определяем расстояние между центрами жил фаз равное 20,3 мм (см.рис.1).
5. Определяем удельное реактивное (индуктивное) сопротивление кабеля марки АВВГнг(А)-LS 3х120, Ом/км:
где: d = 13,5 мм – диаметр жилы кабеля;
6. Определяем удельное реактивное сопротивление кабеля, исходя из длины кабельной трассы:
Проведение измерений сопротивления и какие могут возникнуть нюансы
Щупы мультиметра подключаются в те же гнезда и в целом, измерение сопротивления выполняется практически так же, как и прозвонка проводов, но так как проверить при этом надо не просто целостность проводника, то у этого процесса есть некоторые особенности.
Выбор границ измерений. Когда измеряемое сопротивление хотя бы примерно известно, то регулятором выставляется ближайшее большее значение (если мультиметр не определяет его автоматически). Если сопротивление точно неизвестно, то стоит начать измерения с самого большого значения, постепенно переключая мультиметр на меньшее.
- Когда нужна точность, то обязательно надо учитывать погрешности. К примеру, если есть на резисторе указано сопротивлением 1 кОм (1000 Ом), то во-первых надо учитывать допуски для его изготовления, которые составляют 10%. Как итог – реальные цифры могут быть в диапазоне от 900 до 1100 Ом. Во-вторых – если взять тот же резистор и выставить мультиметр на максимальное значение, к примеру 2000 kОм, то прибор может показать единицу, т.е. 1000 Ом. Если после этого перевести переключатель в положение 2 kОм, то вероятнее всего прибор покажет другую – более точную цифру, к примеру, 0,97 или 1,04.
- Если надо проверить сопротивление детали, которая впаяна в плату, то как минимум один из ее выводов надо выпаивать. В противном случае прибор покажет неправильный результат, так как с высокой долей вероятности параллельно проверяемой детали на схеме есть другие проводники.
В ряде случаев надо учитывать переходное сопротивление контактов – даже чистый припой или ножки неиспользованных радиодеталей со временем может покрываться оксидной пленкой, поэтому место контакта желательно хотя бы минимально зачистить или процарапать концом щупа.
Как проверить сопротивление провода наглядно показано на видео:
Выбор сечения кабелей
Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:
- при передаче в подключенную нагрузку мощности P = 1 600 Вт в линии с напряжением U = 220 V постоянный ток (I) определяют следующим образом: I = P/U ≈ 7,27А;
- сопротивление медного проводника (в обе стороны) длиной 800 м и сечением 2,5 мм кв.: R = (2*I*p)/S = (2*800*0,0175)/2,5 = 11,2 Ом;
- потери по напряжению в этой трассе: ΔU = (2*L*I)/((1/p)*S) = (2*800*7,27)/((1/0,0175)*2,5) = 11 520/ 142,86 = 80,63 V.
При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:
S = (2*I*L)/((1/p)*ΔU.
В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).
С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.
К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.
Измерение сопротивления кабеля мультиметром
При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:
ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,
где:
- Pа (Pр) – активная (реактивная) мощность;
- Rа (Rи) – относительное активное (индуктивное) сопротивление линии в Ом на километр.
Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.
Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.
Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.
К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.
Выбор сечения проводника по допустимому нагреву
По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).
Выбор кабельных изделий с учетом нагрева
Выбор сечения по потерям напряжения
Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.
Выбор по допустимым потерям
Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.
Зачем нужны вычисления
Для людей, которые тесно не работали с электричеством и прокладкой проводов не понять, насколько важно подобрать для той или иной работы правильное сечение провода. А ведь это очень важный аспект. Такая важность вопроса обусловлена тем, что любой провод или кабель представляет собой ведущий элемент для распределения и подачи тока, который подводится к электроприборам
С их помощью подключаются абсолютно все электроприборы (светильники, компьютеры, электроплиты и т.д.), которые имеют разную мощность и технические характеристики
Такая важность вопроса обусловлена тем, что любой провод или кабель представляет собой ведущий элемент для распределения и подачи тока, который подводится к электроприборам. С их помощью подключаются абсолютно все электроприборы (светильники, компьютеры, электроплиты и т.д.), которые имеют разную мощность и технические характеристики
Провода в доме
В связи с такой высокой востребованностью проводов расчет их сечения просто необходим для должного обеспечения постоянного притока электрической энергии к различным приборам. При этом риск возникновения опасностей должен быть по максимуму сведен к нулю. Такие ситуации могут возникнуть из-за постоянного контакта провода с током. Если расчет требуемого сечения кабеля не проводился, и провод имеет небольшое сечение, которое не способно обеспечить в нужных объемах адекватное функционирование электроприборов, к тому же это ведет к нагреванию кабеля. Вследствие этого с течением времени будет происходить медленное разрушение защитной изоляции изделия, и риск появления короткого замыкания также будет повышаться с каждым прошедшим днем.
Как видим, всего лишь неправильно подобранный тип сечения может привести к следующим последствиям:
- приборы будут часто ломаться, не отслужив весь срок, установленный производителем;
- существенно увеличивается риск возгорания провода из-за короткого замыкания;
Короткое замыкание кабеля
- снижение срока службы самой электропроводки;
- высокий риск сгорания проводки;
- риск получения человеком электротравмы.
Поэтому не стоит пытаться сэкономить там, где от этого будет только вред. Ведь при негативном стечении обстоятельств на ремонт техники и замену проводки придется потратиться в разы больше, чем на приобретение провода с нужным сечением!