Как рассчитать теплопотери частного дома?

Тепловой расчет топочной камеры

Используя конструктивные данные котла, составим расчетную схему топки.

Рис. 2.1 — Схема топочной камеры

Расчет топки представим в таблице 2.3.

Таблица 2.3

Рассчитываемая величина

Обозна-чение

Размер-ность

Формула или обоснование

Расчет

Диаметр и толщина экранных труб

dx

мм

По чертежу

32х6

Шаг труб

S1

мм

То же

46

Поверхности:

фронтовой стены

м2

По рис. 2.1

33,3.16,32=543,5

задней стены

То же

боковой стены

пода

Fпод

8,47.16,32=138,2

потолка

Fп

3,2.16,32=52,2

выходного окна

Fвых

(9+2,8+1,34).16,32=214,4

Суммарная поверхность стен топочной камеры

Fст

Fф+Fз+2Fб+Fпод+Fп+

+Fвых

543,5+442,9+2.233,5+138,2+52,2+214,4=1860

Объем топочной камеры

м3

По рис. 2.1

233,5.16,32=3811

Эффективная толщина излучающего слоя

s

м

Тепловое напряжение топочного объема

кВт/м3

Коэффициент избытка воздуха в топке

т

Принят ранее

1,05

Температура горячего воздуха

tг.в.

С

Задана

333

Энтальпия горячего воздуха

кДж/м3

По табл. 2.2

4271,6

Тепло, вносимое воздухом в топку

кДж/м3

Полезное тепловыделение в топке

кДж/м3

Теоретическая температура горения

а

С

По табл. 2.2

2145С

Абсолютная теоретическая температура горения

Та

К

а+273

2418

Высота расположения горелок

м

По рис. 2.1

Высота топки (до середины выходного газового окна)

Нт

м

То же

Смещение максимума температур выше зоны горелок

х

При использовании вихревых горелок в несколько ярусов и D>110кг/с

0,05

Относительное положение максимума температур по высоте топки

хт

Коэффициент

М

Температура газов на выходе из топки

С

Принимаем предварительно

1350

Абсолютная температура газов на выходе из топки

К

1623

Энтальпия газа

кДж/м3

По табл. 2.2

23993

Средняя суммарная теплоемкость продуктов сгорания

Vcср

кДж/(м3.К)

Давление в топке

р

МПа

принимаем

0,1

Коэффициент ослабления лучей трехатомными газами

Коэффициент теплового излучения несветящихся газов

г

Соотношение между содержанием углерода и водорода в топливе

Коэффициент ослабления лучей сажистыми частицами

Коэффициент ослабления лучей светящимся факелом

k

Коэффициент теплового излучения светящейся части факела

с

Коэффициент, характеризующий долю топочного объема, заполненную светящейся частью факела

m

При сжигании газа и

0,1

Коэффициент теплового излучения факела

ф

Угловой коэффициент экрана

х

Для плавниковых экранов

1

Условный коэффициент загрязнения поверхности

При сжигании газа и настенных мембранных экранах

0,65

Коэффициент тепловой эффективности экрана

эк

0,65

Температурный коэффициент

А

Для природного газа

700

Поправочный коэффициент на взаимный теплообмен газовых объемов верхней части топки и ширм

Условный коэффициент загрязнения поверхности входа в ширмы

вых

0,65.0,52=0,338

Коэффициент тепловой эффективности выходной поверхности

вых

вых.х

0,338

Средний коэффициент тепловой эффективности

ср

Коэффициент теплового излучения топки

т

Значение для формулы расчетной температуры газов на выходе из топки

R

Расчетная температура газов на выходе из топки

С

Отличается от ранее принятой менее, чем на 100С, следовательно второе приближение делать не нужно

Энтальпия газа

кДж/м3

По табл. 2.2

24590

Количество тепла, воспринятое в топке

кДж/м3

Поверхность стен топки, занятая горелками

Fгор

м2

Из чертежа

14

Лучевоспринимающая поверхность нагрева экранов топки

Нл

м2

Средняя тепловая на-грузка поверхности нагрева топочных экранов

кВт/ м2

Подсчет вручную

Исходные данные. Одноэтажный дом площадью 8х10 м, высотой 2,5 м. Стены толщиной 38 см сложены из керамического кирпича, изнутри отделаны слоем штукатурки (толщина 20 мм). Пол изготовлен из 30-миллиметровой обрезной доски, утеплен минватой (50 мм), обшит листами ДСП (8 мм). Здание имеет подвал, температура в котором зимой составляет 8°C. Потолок перекрыт деревянными щитами, утеплен минватой (толщина 150 мм). Дом имеет 4 окна 1,2х1 м, входную дубовую дверь 0,9х2х0,05 м.

Задание: определить общие теплопотери дома из расчета, что он находится в Московской области. Средняя разность температур в отопительный сезон – 46°C (как было сказано ранее). Помещение и подвал имеют разницу по температуре: 20 – 8 = 12°C.

1. Теплопотери через наружные стены.

Общая площадь (за вычетом окон и дверей): S = (8+10)*2*2,5 – 4*1,2*1 – 0,9*2 = 83,4 м2.

Определяется теплосопротивление кирпичной кладки и штукатурного слоя:

  • R клад. = 0,38/0,52 = 0,73 м2*°C/Вт.
  • R штук. = 0,02/0,35 = 0,06 м2*°C/Вт.
  • R общее = 0,73 + 0,06 = 0,79 м2*°C/Вт.
  • Теплопотери сквозь стены: Q ст = 83,4 * 46/0,79 = 4856,20 Вт.

2. Потери тепла через пол.

Общая площадь: S = 8*10 = 80 м2.

Вычисляется теплосопротивление трехслойного пола.

  • R доски = 0,03/0,14 = 0,21 м2*°C/Вт.
  • R ДСП = 0,008/0,15 = 0,05 м2*°C/Вт.
  • R утепл. = 0,05/0,041 = 1,22 м2*°C/Вт.
  • R общее = 0,03 + 0,05 + 1,22 = 1,3 м2*°C/Вт.

Подставляем значения величин в формулу для нахождения теплопотерь: Q пола = 80*12/1,3 = 738,46 Вт.

3. Потери тепла через потолок.

Площадь потолочной поверхности равна площади пола S = 80 м2.

Определяя теплосопротивление потолка, в данном случае не берут во внимание деревянные щиты: они закреплены с зазорами и не являются барьером для холода. Тепловое сопротивление потолка совпадает с соответствующим параметром утеплителя: R пот

= R утепл. = 0,15/0,041 = 3,766 м2*°C/Вт.

Величина теплопотерь сквозь потолок: Q пот. = 80*46/3,66 = 1005,46 Вт.

4. Теплопотери через окна.

Площадь остекления: S = 4*1,2*1 = 4,8 м2.

Для изготовления окон использован трехкамерный ПВХ профиль (занимает 10 % площади окна), а также двухкамерный стеклопакет с толщиной стекол 4 мм и расстоянием между стеклами 16 мм. Среди технических характеристик производитель указал тепловые сопротивления стеклопакета (R ст.п. = 0,4 м2*°C/Вт) и профиля (R проф. = 0,6 м2*°C/Вт). Учитывая размерную долю каждого конструктивного элемента, определяют среднее теплосопротивление окна:

  • R ок. = (R ст.п.*90 + R проф.*10)/100 = (0,4*90 + 0,6*10)/100 = 0,42 м2*°C/Вт.
  • На базе вычисленного результата считаются теплопотери через окна: Q ок. = 4,8*46/0,42 = 525,71 Вт.

5. Дверь.

Площадь двери S = 0,9*2 = 1,8 м2. Тепловое сопротивление R дв. = 0,05/0,14 = 0,36 м2*°C/Вт, а Q дв. = 1,8*46/0,36 = 230 Вт.

Итоговая сумма теплопотерь дома составляет: Q = 4856,20 Вт + 738,46 Вт + 1005,46 Вт + 525,71 Вт + 230 Вт = 7355,83 Вт. С учетом инфильтрации (10 %) потери увеличиваются: 7355,83*1,1 = 8091,41 Вт.

Выбор радиаторов отопления

Традиционно мощность отопительного радиатора рекомендовано выбирать по площади отапливаемой комнаты, причем с 15-20% завышением мощностных потребностей на всякий случай.

На примере рассмотрим, насколько корректна методика выбора радиатора «10 м2 площади – 1,2 кВт».

Тепловая мощность радиаторов зависит от способа их подключения, что необходимо учитывать при проведении расчетов системы отопления

Исходные данные: угловая комната на первом уровне двухэтажного дома ИЖС; внешняя стена из двухрядной кладки керамического кирпича; ширина комнаты 3 м, длина 4 м, высота потолка 3 м.

По упрощенной схеме выбора предлагается рассчитать площадь помещения, считаем:

3 (ширина) · 4 (длина) = 12 м2

Т.е. необходимая мощность радиатора отопления с 20% надбавкой получается 14,4 кВт. А теперь посчитаем мощностные параметры отопительного радиатора на основании теплопотерь комнаты.

Фактически площадь комнаты влияет на потери тепловой энергии меньше, чем площадь ее стен, выходящих одной стороной наружу здания (фасадных).

Поэтому считать будем именно площадь «уличных» стен, имеющихся в комнате:

3 (ширина) · 3 (высота) + 4 (длина) · 3 (высота) = 21 м2

Зная площадь стен, передающих тепло «на улицу», рассчитаем теплопотери при разнице комнатной и уличной температуры в 30о (в доме +18 оС, снаружи -12 оС), причем сразу в киловатт-часах:

0,91 · 21 · 30 : 1000 = 0,57 кВт,

Где: 0,91 – сопротивление теплопередачи м2 комнатных стен, выходящих «на улицу»; 21 – площадь «уличных» стен; 30 – разница температур внутри и снаружи дома; 1000 – число ватт в киловатте.

Согласно строительным стандартам приборы отопления располагают в местах максимальных теплопотерь. Например, радиаторы устанавливаются под оконными проемами, тепловые пушки – над входом в дом. В угловых комнатах батареи устанавливаются на глухие стены, подверженные максимальному воздействию ветров

Выходит, что для компенсации потерь тепла через фасадные стены данной конструкции, при 30о разнице температур в доме и на улице достаточно отопления мощностью 0,57 кВт·ч. Увеличим необходимую мощность на 20, даже на 30% – получаем 0,74 кВт·ч.

Таким образом, реальные мощностные потребности отопления могут быть значительно ниже, чем торговая схема «1,2 кВт на квадратный метр площади помещения».

Причем корректное вычисление необходимых мощностей отопительных радиаторов позволит сократить объем теплоносителя в системе отопления, что уменьшит нагрузку на котел и расходы на топливо.

Почему многослойное остекление эффективней?

Опыт показывает, что увеличение толщины воздушной прослойки между стёклами в двойном оконном переплёте, не приводит к увеличению тепловой эффективности всего окна. Эффективней сделать несколько прослоек, увеличивая количество стёкол.

«Классическая» двойная рама малоэффективна. А наибольшего эффекта можно достигнуть тройным остеклением. То есть, двухкамерный стеклопакет по всем параметрам (теплоизоляция, звукоизоляция) эффективней однокамерного.

(Камеры здесь – это промежутки между стёклами; два стекла – один промежуток, однокамерный стеклопакет; три стекла – два промежутка, две камеры… и т. д.)

Оптимальной толщиной воздушной прослойки между стёклами считается 16 мм.

Когда вам предлагают стеклопакеты, и нужно выбрать из нескольких видов, например, из таких (числа над стеклопакетами — это толщины стёкол и пространств между ними):

— то оптимальные второй и третий.

Ну, опять же, нужно иметь в виду уплотнение стёкол. В современных стеклопакетах не только увеличено число камер, но и в пространстве между стёклами откачан воздух, вместо него закачан какой-нибудь инертный газ, и камеры герметичны.

О калькуляторе

Онлайн-калькулятор позволяет рассчитать теплопотери бытового трубопровода находящегося в режиме останова и подобрать саморегулирующийся греющий кабель для компенсации тепловых потерь и защиты трубы от замерзания.

Калькулятор позволяет рассчитывать тепловые потери через поверхность трубопровода, расположенного на открытом воздухе, в помещении и под землей.

Алгоритмы расчета тепловых потерь через стенку трубы соответствуют:

  • ГОСТ 62086-2-2005
  • СП 41-103-2000

Но при этом имеют определенные ограничения:

  • Расчет производится на поддержание температуры +5°С на поверхности трубы.
  • Материал трубопровода и кабельная арматура не учитываются.

Данные о минимальной температуре окружающей среды соответствуют СНиП 23-01-99.

Данной функциональности достаточно для расчета защиты от замерзания водопроводных и канализационных труб.

Расчет теплопотерь

Вот как следует производить вычисления:

Теплопотери через ограждающие конструкции

Для каждого материала, входящего в состав ограждающих конструкций, в справочнике или предоставленном производителем паспорте находим значение коэффициента теплопроводности Кт (единица измерения — Вт/м*градус).

Для каждого слоя ограждающих конструкций определяем термическое сопротивление по формуле: R = S/Кт, где S – толщина данного слоя, м.

Для многослойных конструкций сопротивления всех слоев нужно сложить.

Определяем теплопотери для каждой конструкции по формуле Q = (A / R) *dT,

Где:

  • А — площадь ограждающей конструкции, кв. м;
  • dT — разность наружной и внутренней температур.
  • dT следует определять для самой холодной пятидневки.

Теплопотери через вентиляцию

Для этой части расчета необходимо знать кратность воздухообмена.

В жилых зданиях, возведенных по отечественным стандартам (стены являются паропроницаемыми), она равна единице, то есть за час должен обновиться весь объем воздуха в помещении.

В домах, построенных по европейской технологии (стандарт DIN), при которой стены изнутри застилаются пароизоляцией, кратность воздухообмена приходится увеличивать до 2-х. То есть за час воздух в помещении должен обновиться дважды.

Теплопотери через вентиляцию определим по формуле:

Qв = (V*Кв / 3600) * р * с * dT,

Где

  • V — объем помещения, куб. м;
  • Кв — кратность воздухообмена;
  • Р — плотность воздуха, принимается равной 1,2047 кг/куб. м;
  • С — удельная теплоемкость воздуха, принимается равной 1005 Дж/кг*С.

Приведенный расчет позволяет определить мощность, которую должен иметь теплогенератор системы отопления. Если она оказалась слишком высокой, можно сделать следующее:

  • понизить требования к уровню комфорта, то есть установить желаемую температуру в наиболее холодный период на минимальной отметке, допустим, в 18 градусов;
  • на период сильных холодов понизить кратность воздухообмена: минимально допустимая производительность приточной вентиляции составляет 7 куб. м/ч на каждого обитателя дома;
  • предусмотреть организацию приточно-вытяжной вентиляции с рекуператором.

Заметим, что рекуператор полезен не только зимой, но и летом: в жару он позволяет сэкономить произведенный кондиционером холод, хотя и работает в это время не столь эффективно, как в мороз.

Правильнее всего при проектировании дома выполнить зонирование, то есть назначить для каждого помещения свою температуру исходя из требуемого комфорта. К примеру, в детской или комнате пожилого человека следует обеспечить температуру порядка 25-ти градусов, тогда как для гостиной будет достаточно и 22-х. На лестничной площадке или в помещении, где жильцы появляются редко либо имеются источники тепловыделения, расчетную температуру можно вообще ограничить 18-ю градусами.

Очевидно, что цифры, полученные в данном расчете, актуальны только для очень короткого периода — самой холодной пятидневки. Чтобы определить общий объем энергозатрат за холодный сезон, параметр dT нужно вычислять с учетом не самой низкой, а средней температуры. Затем нужно выполнить следующее действие:

W = ((Q + Qв) * 24 * N)/1000,

Где:

  • W — количество энергии, требующейся для восполнения теплопотерь через ограждающие конструкции и вентиляцию, кВт*ч;
  • N — количество дней в отопительном сезоне.

Однако, данный расчет окажется неполным, если не будут учтены потери тепла в канализационную систему.

Теплопотери через канализацию

Для приема гигиенических процедур и мытья посуды жильцы дома греют воду и произведенное тепло уходит в канализационную трубу.

Но в данной части расчета следует учитывать не только прямой нагрев воды, но и косвенный — отбор тепла осуществляет вода в бачке и сифоне унитаза, которая также сбрасывается в канализацию.

Исходя из этого, средняя температура нагрева воды принимается равной всего 30-ти градусам. Теплопотери через канализацию рассчитываем по следующей формуле:

Qк = (Vв * T * р * с * dT) / 3 600 000,

Где:

  • Vв — месячный объем потребления воды без разделения на горячую и холодную, куб. м/мес.;
  • Р — плотность воды, принимаем р = 1000 кг/куб. м;
  • С — теплоемкость воды, принимаем с = 4183 Дж/кг*С;
  • dT — разность температур. Учитывая, что вода на входе зимой имеет температуру около +7 градусов, а среднюю температуру нагретой воды мы условились считать равной 30-ти градусам, следует принимать dT = 23 градуса.
  • 3 600 000 — количество джоулей (Дж) в 1-м кВт*ч.

Расчет теплопотерь дома — считаем сами правильно!

Расчет отопления частного дома можно сделать самостоятельно, проведя некоторые замеры и подставив свои значения в нужные формулы. Расскажем, как это делается.

Вычисляем теплопотери дома

От расчета теплопотерь дома зависит несколько критических параметров системы отопления и в первую очередь – мощность котла.

Последовательность расчета следующая:

Вычисляем и записываем в столбик площадь окон, дверей, наружных стен, пола, перекрытия каждой комнаты. Напротив каждого значения записываем коэффициент теплопроводности материалов, из которых построен наш дом.

Если вы не нашли нужный материал в приведенной таблице, то посмотрите в расширенной версии таблицы, которая так и называется – коэффициенты теплопроводности материалов (скоро на нашем сайте). Далее, по ниже приведенной формуле вычисляем потери тепла каждого элемента конструкции нашего дома.

ΔT — разница температур внутри и снаружи помещения для самых холодных дней °C

R — значение теплосопротивления конструкции, м2·°C/Вт

λ — коэффициент теплопроводности (см. таблицу по материалам).

Суммируем теплосопротивление всех слоев. Т.е. для стен учитывается и штукатурка и материал стен и наружное утепление (если есть).

Складываем все Q для окон, дверей, наружных стен, пола, перекрытия

К полученной сумме добавляем 10-40% вентиляционных потерь. Их тоже можно вычислить по формуле, но при хороших окнах и умеренном проветривании, смело можно ставить 10%.

Результат делим на общую площадь дома. Именно общую, т.к. косвенно тепло будет тратиться и на коридоры, где радиаторов нет. Вычисленная величина удельных теплопотерь может колебаться в пределах 50-150 Вт/м2. Самые высокие потери тепла у комнат верхних этажей, самые низкие у средних.

После окончания монтажных работ, проведите тепловизионный контроль стен, потолков и других элементов конструкции, чтобы убедиться, что нигде нет утечек тепла.

Приведенная ниже таблица поможет точнее определиться с показателями материалов.

Определяемся с температурным режимом

Этот этап напрямую связан с выбором котла и способом отопления помещений. Если предполагается установка «теплых полов», возможно, лучшее решение – конденсационный котел и низкотемпературный режим 55С на подаче и 45С в «обратке». Такой режим обеспечивает максимальный кпд котла и соответственно, наилучшую экономию газа. В будущем, при желании использовать высокотехнологичные способы обогрева, (тепловой насос, солнечные коллекторы) не придется переделывать систему отопления под новое оборудование, т.к. оно рассчитано именно на низкотемпературные режимы. Дополнительные плюсы – не пересушивается воздух в помещении, интенсивность конвекционных потоков ниже, меньше собирается пыли.

В случае выбора традиционного котла, температурный режим лучше выбрать максимально приближенным к европейским нормам 75С – на выходе из котла, 65С – обратная подача, 20С — температура помещения. Такой режим предусмотрен в настройках почти всех импортных котлов. Кроме выбора котла, температурный режим влияет на расчет мощности радиаторов.

Подбор мощности радиаторов

Для расчета радиаторов отопления частного дома материал изделия не играет роли. Это дело вкуса хозяина дома. Важна только указанная в паспорте изделия мощность радиатора. Часто производители указывают завышенные показатели, поэтому результат вычислений будем округлять в большую сторону. Расчет производится для каждой комнаты отдельно. Несколько упрощая расчеты для помещения с потолками 2,7 м, приведем простую формулу:

Где К — искомое количество секций радиатора

P – мощность, указанная в паспорте изделия

Пример вычисления: Для комнаты площадью 30 м2 и мощности одной секции 180 Вт получаем: K= 30 х 100/180

K=16,67 округленно 17 секций

Тот же расчет можно применить для чугунных батарей, принимая что

1 ребро(60 см) = 1 секция.

Гидравлический расчет системы отопления

Смысл этого расчета – правильно выбрать диаметр труб и характеристики циркуляционного насоса. Из-за сложности расчетных формул, для частного дома проще выбрать параметры труб по таблице.

Здесь приведена суммарная мощность радиаторов, для которых труба подает тепло.

Расчет потерь тепла

Для точного расчета теплопотерь потребуется подготовить исходные данные по конкретному объекту (объем, высота здания, его местоположение), а также нормативные документы, содержащие таблицы различных коэффициентов, показателей.  Сначала рекомендуется рассчитать все составляющие формулы, записать данные, затем подставить данные формулы.

Основные формулы

Для расчета используется следующая формула:

Qот = а*V*qот *(tв — tнр)*(1 + Кир)*10-6 Гкал/час

  • а – поправочный коэффициент, который учитывает разницу между температурой воздуха снаружи (улица) определенной местности и температурой -30оС, для которой обозначена характеристика qот;
  • V – объем здания по внешнему периметру;
  • qот — удельная характеристика отапливаемого помещения, которая обозначена при температуре снаружи -30оС;
  • tв –температура воздуха внутри помещения;
  •  tнр –температура снаружи конкретного местоположения (местности), в котором расположено здание;
  • Кир –коэффициент инфильтрации, определяемый тепловым, ветровым напором.

Из приведенных выше составляющих формулы к числу исходных данных относится объем помещения, поправочный коэффициент, удельную характеристику здания, расчетные температуры необходимо взять из документации, а коэффициент инфильтрации рассчитать по формуле:

                                  273 + tнр

Кир = 10-2 √[2gL(1 — ————-) + wp2]

                                  273 + tв

g – ускорение свободного падения земли (9,8 м/с2);

L – высота строения;

w— обусловленная данным регионом скорость ветра отопительного периода.

Необходимая документация

Часть данных необходимо взять в нормативной документации, рекомендуется скачать эти документы или найти их онлайн:

Методика определения количества тепловой энергии и теплоносителя (1);

Общие санитарно-гигиенические требования к воздуху рабочей зоны (2);

Здания жилые и общественные. Параметры микроклимата в помещениях (3);

Строительная климатология (4).

Для удобства литература пронумерована. Далее соответствующая документация будет обозначаться сокращенно (например, Д3).

Исходные данные. Предварительные подсчеты

Рассмотрим расчет теплопотерь на примере административного здания города Омск. Высота здания – 9 метров. Объем здания по внешнему периметру – 8560 кубических метров.

В Таблице 3.1 – Климатические параметры холодного периода года (Д4)  напротив соответствующего города находим  5-ую графу, температуру воздуха наиболее холодной пятидневки. Для Омска данный показатель равен – 37оС.

В 20-й графе этой же таблицы находим скорость ветра данного города. Данный показатель составляет 2,8 м/с.

В пункте 1.2 (Д1) находим Таблицу 2, поправочный коэффициент а для жилых помещений. В таблице представлены коэффициенты температуры шагом 5 градусов, соответственно есть данные температуры — 35 оС (коэффициент 0,95), — 40 оС (коэффициент 0,9). Рассчитываем методом интерполяции коэффициент нашей температуры — 37 оС, получаем – 0,93.

Далее п.3 (Д3) находим Классификацию помещений и определяем категорию анализируемого помещения. Поскольку речь идет об административном здании, ему присваивается категория 3в (пространство пребывания большого количества людей без верхней одежды в положении стоя).

Таблица 3 (Д3) Допустимые, достаточные значения увлажненности воздуха, силы ветра, температурного режима гражданских помещений – находим показатель Температура (оптимальная) для нашего типа здания (3в). Показатель составляет 18-20 градусов. Выбираем наименьшую границу  18оС.

Таблице 4 (Д1) Удельный показатель тепла культурно-образовательных, административных, лечебных зданий – находим соответствующий коэффициент, исходя из объема здания. Данный случай до 10 000 м3. Коэффициент составляет 0,38.

Все данные подготовлены:

g – 9,8 м/с2;

L – 9 м;

w– 2,8 м/с;

а –0,93;

V – 8560 м3;

qот – 0,38;

tв – 18оС;

 tнр – — 37оС;

Кир – необходимо рассчитать.

Далее можно просто подставить цифры формулы.

Итоговый расчет

Сначала рассчитываем коэффициент инфильтрации:

                       273 + (-37)

Кир = 10-2 √ = 0,4

                     273 + 18

Qот = 0,93*8560*0,38*(18 – (-37))*(1 + 0,4)*10-6 Гкал/час = 232933 *10-6 Гкал/час = 0,232933 Гкал/час

Для большего понимания, посмотрите данное видео:

Способы расчетов тепловой энергии

Некоторые жильцы для расчета теплопотерь пользуются простым методом. Он заключается в том, что при условии высоты потолка – 2,5 м., площадь помещения умножается на 100 Вт. (при другой высоте потолка, вводится поправочный коэффициент). Но полученный результат при этом способе настолько не достоверный, что его можно смело прировнять к нулю.

Такое утверждение объясняется тем, что на теплопотери влияют несколько важных факторов, такие как:

  • ограждающая конструкция;
  • площадь окон и вид их остекленения;
  • внутренняя температура;
  • кратность теплообмена и др.

Помимо этого даже при равных условиях значений вышеперечисленных факторов, теплопотери у маленьких домов и больших зданий будут разные. Поэтому, чтобы более точно определить теплопотери, были разработаны следующие специальные методики:

  1. Ручной подсчет. В этом случае все расчеты выполняются самостоятельно при помощи специально выведенных формул и таблиц.
  2. Онлайн — калькулятор. Здесь достаточно будет ввести все указанные данные, в вычислительную программу, после чего она самостоятельно произведет расчет и выдаст итог.

При использовании этих способов, можно будет не только достоверно рассчитать теплопотери, но и правильно подобрать отопительную систему, при использовании которой не возникнет неоправданных затрат.

расчет теплопотерь

Итак, чтобы не допустить ошибок, рассмотрим каждый вычислительный способ более подробно.

Учет тепла на подогрев воздуха

Выполняя расчет теплопотерь здания, важно учесть количество тепловой энергии, расходуемой системой отопления на подогрев вентиляционного воздуха. Доля этой энергии достигает 30% от общих потерь, поэтому игнорировать ее недопустимо

Рассчитать вентиляционные теплопотери дома можно через теплоемкость воздуха с помощью популярной формулы из курса физики:

Q возд = cm (t в — t н). В ней:

  • Q возд — тепло, расходуемое системой отопления на прогрев приточного воздуха, Вт;
  • t в и t н — то же, что в первой формуле, °С;
  • m — массовый расход воздуха, попадающего в дом снаружи, кг;
  • с — теплоемкость воздушной смеси, равна 0.28 Вт / (кг °С).

Здесь все величины известны, кроме массового расхода воздуха при вентиляции помещений. Чтобы не усложнять себе задачу, стоит согласиться с условием, что воздушная среда обновляется во всем доме 1 раз в час. Тогда объемный расход воздуха нетрудно посчитать путем сложения объемов всех помещений, а затем нужно перевести его в массовый через плотность. Поскольку плотность воздушной смеси меняется в зависимости от его температуры, нужно взять подходящее значение из таблицы:

m = 500 х 1,422 = 711 кг/ч

Подогрев такой массы воздуха на 45°С потребует такого количества теплоты:

Q возд = 0.28 х 711 х 45 = 8957 Вт, что примерно равно 9 кВт.

По окончании расчетов результаты тепловых потерь сквозь наружные ограждения суммируются с вентиляционными теплопотерями, что дает общую тепловую нагрузку на систему отопления здания.

Представленные методики вычислений можно упростить, если формулы ввести в программу Excel в виде таблиц с данными, это существенно ускорит проведение расчета.

Расчёт потерь тепла с трубопроводов

Расчёт потерь тепла с трубопроводов тепловых сетей выполнен на основе методики приведенной в СНиП 2.04.14 Тепловая изоляция оборудования и трубопроводов.

Методика расчёта тепловых потерь пригодна для всех трубопроводов, на которые распространяется действие данных норм, за исключением систем с отрицательной температурой рабочей среды.

Расчёт величины тепловых потерь выполнен по нормативной плотности теплового потока через изолированную поверхность трубопровода. В методике использованы табличные данные удельных тепловых потерь с одного метра трубы, приведенные в СНиП. Потери тепла для диаметров труб и температур теплоносителя, не приведенных в таблицах — определены методами интерполяции и экстраполяции.

Расчётные потери тепла трубопроводами тепловой сети определяется по формуле:

q – удельная нормативная величина тепловых потерь с одного метра трубы, Вт/м, при средней температуре теплоносителя и заданном количестве часов работы в год, определяется для каждого из диаметров по табличным данным СНиП 2.04.14;

k – коэффициент, учитывающий дополнительные потери тепла с опор трубопровода и арматуры, принимается по табличным данным;

b – коэффициент, учитывающий изменение плотности теплового потока через теплоизоляционный слой из пенополиуретана (ППУ), определяется по СНиП 2.04.14;

l – длина участка трубопровода, м.

Температуру теплоносителя для расчёта потерь тепла в тепловых сетях следует принимать:

  • среднюю температуру теплоносителя за год — для непрерывно работающих сетей;
  • среднюю температуру теплоносителя за период со среднесуточной температурой наружного воздуха ниже 8°С — для тепловых сетей работающих только в отопительный период.

Расчётные температуры в двухтрубных водяных тепловых сетях при качественном регулировании в зависимости от температурного графика отпуска тепла применяют:

Калькулятор расчета теплопотерь

Информация по назначению калькулятора

К алькулятор теплопотерь предназначен для расчета примерного количества тепла, теряемого помещением через ограждающие конструкции в единицу времени в самую холодную пятидневку выбранного населенного пункта (по актуализированной редакции СП 131.13330.2012).

Д анные расчеты являются достаточно приблизительными, так как невозможно учесть абсолютно все факторы, влияющие на тепловые потери, а полученные результаты необходимо проверять экспериментально, для подтверждения расчетов. Ошибки в конструкции стен так же могут значительным образом повлиять на фактические теплопотери. Например, образование конденсата внутри стеновой конструкции может значительно увеличить теплопроводность теплоизолирующего материала в зимний период.

Т акже на общие теплопотери влияют разность наружной и внутренней температур, солнечная радиация, атмосферные осадки, ветра и другие факторы. Моделирование процессов тепловых потерь целого здания является актуальной проблемой. Зная теплопотери здания, можно переходить к выбору мощности и вариантов системы отопления.

Д ля снижения тепловых потерь здания необходимо использовать максимально эффективные теплоизоляционные материалы

Особенно стоит уделить внимание кровле, так как именно через нее наружу уходит наибольшее количество тепла из помещения. Для поддержания комфортного внутреннего микроклимата, а так же снижения финансовых затрат на отопление, необходимо соблюдать правильный баланс утепления всех ограждающих конструкций

Примерное минимальное качество утепления наружных стен

300 мм Дерево + 100 мм Полистирол/Каменная Вата

500 мм Газо- и пенобетон

300 мм Газо- и пенобетон + 100 мм Полистирол/Каменная Вата

400 мм Керамзитобетон + 100 мм Полистирол/Каменная Вата

250 мм Кирпич + 200 мм Полистирол/Каменная Вата

300 мм Дерево + 50 мм Полистирол/Каменная Вата

400 мм Газо- и пенобетон

300 мм Газо- и пенобетон + 50 мм Полистирол/Каменная Вата

200 мм Керамзитобетон + 100 мм Полистирол/Каменная Вата

250 мм Кирпич + 100 мм Полистирол/Каменная Вата

200 мм Газо- и пенобетон

100 мм Газо- и пенобетон + 120 мм Кирпич

300 мм Керамзитобетон

Общие сведения по результатам расчетов

  • Т еплопотери помещения – Общее количество тепла, измеряемое в Ваттах, которое теряет расчетное помещение в единицу времени через ограждающие конструкции.
  • У дельные теплопотери помещения – Теплопотери помещения отнесенные к его площади
  • Т емпература воздуха наиболее холодных суток
  • Т емпература воздуха наиболее холодной пятидневки
  • П родолжительность отопительного сезона
  • С редняя температура воздуха отопительного сезона

Калькулятор работает в тестовом режиме.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector