Единицы измерения и дозы радиации

Путь к музыкальному Олимпу

Юлия всегда замечательно пела и увлекалась пением с детства, но не рассматривала его как свое призвание. И лишь спустя долгое время Зиверт, наконец, осознала, какую важную роль играет это увлечение в ее жизни, и решила всерьез заняться данным направлением.

Она долго искала подходящего преподавателя вокала и, в конце концов, остановила свой выбор на вокальной студии «Vocalmix», где ее обучение смогли организовать с сохранением собственного выработанного стиля певицы, чему Юлия безмерно благодарна.

Юлия на уроках вокала

Так, уже в 2016 году начинающая певица участвовала во Всероссийском вокальном конкурсе и, победив в нем, приобрела первых поклонников своего таланта.

Первым хитом восходящей звезды стала песня «Чак», которую Юлия Zivert презентовала 1 апреля 2017 года в YouTube. Композиция сразу стала так невероятно популярна, что положила начало множеству кавер-версий на ее основе.

Летом того же года певица выпустила первый клип, в котором предстала в образе бесшабашной «девчонки-пацанки», также принимали участие и подписчики Юлии в Instagram. «Изюминкой» клипа, снятого при помощи квадрокоптера, стали маски с лицом известного актера Чака Норриса, которые надели участвующие в съемке. В результате веселый клип пришелся по вкусу публике, набрав более 600 тысяч просмотров.

Воодушевленная Zivert не останавливается на достигнутом, и уже 15 сентября 2017 года преподносит новую песню «Анестезия», на которую позже также делает официальное видео, на этот раз представ перед поклонниками в образе космической девушки, которой был навеян персонажем Шторм, героиней комиксов Marvel и Тринити из «Матрицы». При этом режиссером клипа является Мария Скобелева, ранее взаимодействовавшая с американскими артистами Travis Scott и Tyga.

Премьера вновь прошла на ура, и несколько позже Юлии предлагают присоединиться к лейблу «Первое музыкальное издательство», с которым сработались Ева Польна, Рита Дакота, Нюша, IOWA, Бьянка, Feduk, Monatik, Дима Билан, Иван Дорн и другие не менее известные исполнители.

Зимой 2017 года приняла участие в программе Андрея Малахова «Прямой эфир», презентовав свою новую песню «Ветер перемен» в память о Елизавете Глинке (докторе Лизе) и других людях, трагически погибших в авиакатастрофе под Сочи.

Исполнение композиции «Ветер перемен» в прямом эфире

Кстати, данная композиция уже второй раз была использована в кино: впервые в советские годы в фильме про Мэри Поппинс, а теперь – ремейком в качестве саундтрека к сериалу «Чернобыль. Зона отчуждения».

В апреле 2018 года на базе лейбла «Первое музыкальное» Юля порадовала своих поклонников первым миниальбомом под названием «Сияй», включающим в себя винтажные композиции, исполненные в стиле конца 80-х и начала 90-х годов: «Еще хочу», «Зеленые волны», «Сияй» и «Океан».

В начале лета исполнительница представила на YouTube свой свежий клип на трек «Ещё хочу», настроение которого отличалось некоторой мрачностью по сравнению с обычным стилем, предпочитаемым певицей («vintage pop»).

Спустя несколько месяцев плодотворной работы – и Зиверт выкладывает на своем YouTube-канале забавный клип на песню «Зелёные волны», срежиссированный в любимой ею атмосфере 80-х годов, и видео на трек «Техно», записанное совместно с 2 Ляма.

И также приятным подарком под Новый год для фанатов стала премьера первой песни Юлии «Можно все», тогда еще только начинающей певческую карьеру исполнительницы.

Однако самой известной музыкальной композицией, прославившей Zivert, является трек «Life». Он увидел свет в начале 2019 года и сразу получил признание в интернете, где его окрестили «гимном 2018-2019 года». И также эта песня вошла в топ Apple Music и iTunes, получив 5-е место по количеству покупок в iTunes и 8-е – по числу стримов в Apple Music.

Зиверт на съемках клипа «Life» в Гонконге

А вот следующее видео Юлии на популярную песню «Life» диаметрально противоположно по настроению предыдущему клипу – оно пронизано атмосферой философских раздумий одиночки, оказавшегося потерянным в гигантском мегаполисе. Кстати, на роль огромного города в клипе выбрали Гонконг.

Нужно отметить, что девушка делится свои творчеством не только в студийном формате, записывая треки либо презентуя новые клипы, но и активно взаимодействует со своей аудиторией:

  • принимает участие различных программах («TOPIC CHART» на студии EUROPA PLUS TV, «Концертный зал» на канале Страна FM);
  • участвует в радиоэфирах (радио ENERGY, «Авторадио»);
  • выступает вживую, начиная с концертов в Москве на станции метро, различных музыкальных фестивалей («Europa Plus LIVE 2019», «Новая волна 2019», «Big Love Show!») до туров по городам России и Беларуси.

Единица измерения дозы облучения / дозы радиации Зиверт. Единица измерения радиации Зиверт. Опасные и повседневные уровни радиации.

Зиверт (обозначение: Зв, Sv) — единица измерения СИ эффективной и эквивалентной доз ионизирующего излучения (используется с 1979 г.). 1 зиверт — это количество энергии, поглощенное килограммом биологической ткани, равное по воздействию поглощенной дозе 1 Гр (1 Грей).

Через другие единицы измерения СИ зиверт выражается следующим образом:1 Зв = 1 Дж/кг = 1 м2 / с2 (для излучений с коэффициентом качества, равным 1,0)

  • Равенство зиверта и грея показывает, что эффективная доза и поглощeнная доза имеют одинаковую размерность, но не означает, что эффективная доза численно равна поглощeнной дозе. При определении эффективной дозы учитывается биологическое воздействие радиации, она равна поглощённой дозе, умноженной на коэффициент качества, зависящий от вида излучения и характеризует биологическую активность того или иного вида излучения. Имеет большое значение для радиобиологии.
  • Единица названа в честь шведского учeного Рольфа Зиверта.
  • Раньше (а иногда и сейчас) использовалась единица бэр(биологический эквивалент рентгена), англ. rem (roentgen equivalent man) — устаревшая внесистемная единица измерения эквивалентной дозы. 100 бэр равны 1 зиверту. Также верно что 100 рентген = 1 зиверт с оговоркой, что рассматривается биологическое действие рентгеновского излучения.

Кратные и дольные единицы зиверта:

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Зв деказиверт даЗв daSv 10-1 Зв децизиверт дЗв dSv
102 Зв гектозиверт гЗв hSv 10-2 Зв сантизиверт сЗв cSv
103 Зв килозиверт кЗв kSv 10-3 Зв миллизиверт мЗв mSv
106 Зв мегазиверт МЗв MSv 10-6 Зв микрозиверт мкЗв µSv
109 Зв гигазиверт ГЗв GSv 10-9 Зв нанозиверт нЗв nSv
1012 Зв теразиверт ТЗв TSv 10-12 Зв пикозиверт пЗв pSv
1015 Зв петазиверт ПЗв PSv 10-15 Зв фемтозиверт фЗв fSv
1018 Зв эксазиверт ЭЗв ESv 10-18 Зв аттозиверт аЗв aSv
1021 Зв зеттазиверт ЗЗв ZSv 10-21 Зв зептозиверт зЗв zSv
1024 Зв йоттазиверт ИЗв YSv 10-24 Зв йоктозиверт иЗв ySv
     
применять не рекомендуется

Допустимые и смертельные дозы радиации для человека

  • Миллизиверт часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).
  • Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апр. 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации».
  • Естественное фоновое ионизирующее излучение в среднем равно 2,4 мЗв/год. При этом разброс значений фонового излучения в разных точках Земли составляет 1—10 мЗв/год.

При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть наступает в 50 % случаев:

  • при дозе порядка 3-5 Зв из-за повреждения костного мозга в течение 30—60 суток;
  • 10 ± 5 Зв из-за повреждения желудочно-кишечного тракта и лeгких в течение 10—20 суток;
  • > 15 Зв из-за повреждения нервной системы в течение 1—5 суток.

Способы индивидуальной защиты в случае радиационного загрязнения местности

Определены стандартные действия для населения, если на территории радиация. Смертельная доза облучения опасна для жизни, поэтому для уменьшения летальных исходов организовывается эвакуация людей в сооружения, которые по степени защиты делят на капитальные бомбоубежища, подвалы, деревянные строения и автомобили. Лучше всего защищает первый тип строения, остальные рассматриваются как экстренные временные пристанища.

К эффективным мерам относят защиту органов дыхания, воды и продовольственных припасов. Укрытие предметов первой необходимости делают заранее, если существует опасность выброса или взрыва. Употребляют противорадиационные медикаменты, не применяют для питания молоко в свежем виде.

Производится регулярная санитарная обработка и обеззараживание местности, при любом удобном случае люди эвакуируются за пределы зараженного района. Уменьшение внутреннего облучения за счет исключения захвата пыли обеспечивается респираторами, эффективными в 80% случаев. Меньший показатель дает марлевая повязка из четырех слоев, но используют все имеющиеся под рукой средства защиты. В качестве накидки применяют водоотталкивающие дождевики, в крайнем случае, полиэтиленовую пленку.

В заключение следует упомянуть, что радиационная загрязненность местности не уменьшается, опасность заражения человека сводится к минимуму применением индивидуальных средств защиты и контролем полученной дозы облучения с помощью дозиметров.

Разновидность излучения

Опасными для человека является излучение микрочастиц, приводящее к заболеваниям организма и смертельным случаям. Величина воздействия зависит от разновидности лучей, продолжительности действия и частоты:

  • тяжелые альфа-частицы, положительно заряженные после распада ядер (к ним относят торон, кобальт-60, уран, радон);
  • бета-частицы являются обычными электронами стронция-90, калия-40, цезия-137;
  • гамма-излучение представлено частицами с большой проникающей способностью (цезия-137, кобальта-60);
  • жесткое рентгеновское излучение, напоминающее гамма-частицы, но менее энергичное, обеспечивает америций-241, постоянным источником возникновения является солнце;
  • нейтроны возникают в результате распада ядер плутония, их скопление наблюдается в окружении атомных реакторов.

Виды радиоактивных излучений

Изучая природу радиоактивного излучения, его подвергли воздействию электрического и магнитного полей. Результатом эксперимента стало разделение лучей на положительные и отрицательные, и понимание их неоднородности.

Были открыты закон распада, виды излучений и типы радиоактивности: α-распад, β-превращение, γ-излучение, нейтронное излучение, протонная, кластерная радиоактивности.

Проникая в среду, радиация взаимодействует с атомами, возбуждает их и вырывает электроны. Нейтральные атомы превращаются в положительно заряженные ионы – первичная ионизация. Выбитые электроны за счет собственной энергии сталкиваются с атомами среды и создают вторичную ионизацию.

Растеряв энергию, электроны становятся свободными и образуют отрицательные ионы.

Альфа излучение

Есть 40 природных α-активных ядер и 200 созданных человеком. Альфа излучение – это поток частиц из них.

Проникая через слой вещества, α-частица вступает в неупругое взаимодействие с его атомами и молекулами, ускоряет электроны до преодоления кулоновских ядерных сил и производит ионизацию.

Впоследствии, когда энергия частицы уменьшается, она присоединяет 2 свободных электрона и становится атомом гелия.

Пробег частицы в воздухе 10-11 см, а в тканях тела человека – микроны. Ее большая масса препятствует отклонению от прямого пути.

При внешнем воздействии этого типа излучения на кожу – опасности нет. Если радиоактивный элемент попадет во внутрь с пищей, водой или через рану, то нанесет непоправимые последствия для организма за счет продолжительного времени распада.

Нейтронное излучение

Этот тип излучения используется в оружии массового поражения – нейтронной бомбе. Она способна уничтожать живые объекты, оставляя нетронутыми здания, сооружения, технику.

Нейтральные частицы легко проникают сквозь любую среду и взаимодействуют с ядрами элементов. Отдавая им часть своей энергии, создают вторичную (наведенную) радиацию. Надежной защиты от поражающего фактора не существует. Задержать частицы способны большие объемы воды и некоторые виды полимеров, многослойные среды.

Бета-излучение

Бета-излучение представляет собой поток позитронов и нейтрино или электронов и антинейтрино. Существует третий вариант – k-эффект (захват электрона). Ядро поглощает электрон из оболочки и один из протонов становится нейтроном, при этом испускает нейтрино.

β-излучение распространяется со скоростью близкой к скорости света, сильно отклоняется в электромагнитных полях, но обладает меньшей в сотни раз ионизирующей способностью, чем α-частицы.

За счет лучшего сохранения энергии бета-частицы пробегают большее расстояние – от десятков метров в газах до нескольких мм в металлах. Проникновение в живые ткани – 1,5 см.

Гамма излучение

Y-излучение проникает в свинец на 5 см. В газах распространяется на сотни метров, тело человека «прошивает» насквозь.

Y-частицы – фотоны, создают Комптон-эффект и фотоэффект, образуют электронно-позитронные пары, что подтверждает возможность превращения электромагнитной волны в вещество – единую картину мира.

Рентгеновское излучение

В волновом спектре рентгеновское излучение расположено между ультрафиолетовыми лучами и γ-излучением.

Для создания потока фотонов на рентгеновских частотах используют электровакуумные приборы – трубки. В них 99% затрат энергии – тепловые потери, и 1% создает требуемое излучение.

По степени воздействия лучи относят к мягким или жестким. Для биологических объектов они мутагенные, приводят к ожогам, раку и лучевой болезни.

Личная жизнь восходящей звезды

Юлия с удовольствием переписывается со своими фанатами в соцсетях, однако, личная жизнь Zivert остается тайной для поклонников – девушка предпочитает не распространяться о своем семейном положении, и общественность до сих пор не знает, есть ли у Юли муж, дети или нет.

В 2017 году в Instagram можно было увидеть фотографии Зиверт с симпатичным Евгением Кушниром, у которого также есть аккаунт под ником: instagram.com/aroundzworlds. Известно, что этот молодой человек работал в разных клубах под псевдонимом DJ Невский.

«Обезьянки притягиваются к обезьянкам», — пишет Юлия

Однако через некоторое время совместные фото из интернета пропали. Так что, есть ли у Юлии возлюбленный в настоящий момент или ее сердце свободно – сказать наверняка сложно, возможно пара просто решила перестать афишировать свою личную жизнь, при этом продолжая счастливо вместе проводить время.

Единица измерения дозы облучения / дозы радиации Зиверт. Опасные и повседневные уровни радиации. Единица измерения радиации Зиверт (Зв). Опасные и повседневные уровни радиации

Зиверт (обозначение: Зв, Sv) — единица измерения СИ эффективной и эквивалентной доз ионизирующего излучения (используется с 1979 г.). 1 зиверт — это количество энергии, поглощенное килограммом биологической ткани, равное по воздействию поглощенной дозе 1 Гр (1 Грей).

Через другие единицы измерения СИ зиверт выражается следующим образом:1 Зв = 1 Дж/кг = 1 м2 / с2 (для излучений с коэффициентом качества, равным 1,0)

Равенство зиверта и грея показывает, что эффективная доза и поглощeнная доза имеют одинаковую размерность, но не означает, что эффективная доза численно равна поглощeнной дозе. При определении эффективной дозы учитывается биологическое воздействие радиации, она равна поглощённой дозе, умноженной на коэффициент качества, зависящий от вида излучения и характеризует биологическую активность того или иного вида излучения. Имеет большое значение для радиобиологии.

Единица названа в честь шведского учeного Рольфа Зиверта.

Раньше (а иногда и сейчас) использовалась единица бэр(биологический эквивалент рентгена), англ. rem (roentgen equivalent man) — устаревшая внесистемная единица измерения эквивалентной дозы. 100 бэр равны 1 зиверту. Также верно что 100 рентген = 1 зиверт с оговоркой, что рассматривается биологическое действие рентгеновского излучения.

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
10 Зв деказиверт даЗв daSv 10-1 Зв децизиверт дЗв dSv
102 Зв гектозиверт гЗв hSv 10-2 Зв сантизиверт сЗв cSv
103 Зв килозиверт кЗв kSv 10-3 Зв миллизиверт мЗв mSv
106 Зв мегазиверт МЗв MSv 10-6 Зв микрозиверт мкЗв µSv
109 Зв гигазиверт ГЗв GSv 10-9 Зв нанозиверт нЗв nSv
1012 Зв теразиверт ТЗв TSv 10-12 Зв пикозиверт пЗв pSv
1015 Зв петазиверт ПЗв PSv 10-15 Зв фемтозиверт фЗв fSv
1018 Зв эксазиверт ЭЗв ESv 10-18 Зв аттозиверт аЗв aSv
1021 Зв зеттазиверт ЗЗв ZSv 10-21 Зв зептозиверт зЗв zSv
1024 Зв йоттазиверт ИЗв YSv 10-24 Зв йоктозиверт иЗв ySv
применять не рекомендуется

Допустимые и смертельные дозы для человека

Миллизиверт часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).

Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апр. 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации».

Естественное фоновое ионизирующее излучение в среднем равно 2,4 мЗв/год. При этом разброс значений фонового излучения в разных точках Земли составляет 1—10 мЗв/год.

При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть наступает в 50 % случаев:

  • при дозе порядка 3-5 Зв из-за повреждения костного мозга в течение 30—60 суток;
  • 10 ± 5 Зв из-за повреждения желудочно-кишечного тракта и лeгких в течение 10—20 суток;
  • > 15 Зв из-за повреждения нервной системы в течение 1—5 суток.

Учет доз облучения

По закону, каждое диагностическое исследование, связанное с рентгеновским облучением, должно быть зафиксировано в листе учета дозовых нагрузок, который заполняет врач-рентгенолог и вклеивает в вашу амбулаторную карту. Если вы обследуетесь в больнице, то эти цифры врач должен перенести в выписку.

На практике этот закон мало кто соблюдает. В лучшем случае вы сможете найти дозу, которой вас облучили, в заключении к исследованию. В худшем — вообще никогда не узнаете, сколько энергии получили с незримыми лучами. Однако ваше полное право — потребовать от врача рентгенолога информацию о том, сколько составила «эффективная доза облучения» — именно так называется показатель, по которому оценивают вред от рентгена. Эффективная доза облучения измеряется в милли- или микрозивертах — сокращенно «мЗв» или «мкЗв».

Раньше дозы излучения оценивали по специальным таблицам, где были усредненные цифры. Теперь каждый современный рентгеновский аппарат или компьютерный томограф имеют встроенный дозиметр, который сразу после исследования показывает количество зивертов, полученных вами.

Где можно столкнуться с радиацией

Радиация преследует человека повсюду. Сама земля имеет естественный радиационный фон. Он может различаться в зависимости от региона. Самый большой уровень радиации в нашей стране наблюдается в Алтайском крае. Но даже он настолько мал, что считается полностью безопасным. Гораздо опаснее искусственно созданные источники ионизирующего излучения, с которыми мы сталкиваемся достаточно часто:

  1. Рентгенографическое оборудование в больницах. Каждый год мы проходим флюорографическое обследование и подвергаемся облучению. Доза радиации в рентгенах мала и при однократном прохождении такой процедуры вред здоровью не наносится.
  2. Сканирующие устройства в аэропортах. Они действуют аналогично медицинскому рентгену. Лучи проходят сквозь тело человека, поэтому доза облучения крайне мала.
  3. Экраны старых телевизоров, оснащенных электронно-лучевыми трубками.
  4. Реакторы атомных электростанций. Это наиболее мощный источник. Пока он находится в целостности, особой опасности не представляет. Но любое его повреждение грозит глобальной катастрофой.
  5. Радиоактивные отходы. При их неправильной утилизации возможно заражение окружающей среды, которое несет в себе потенциальную опасность.

Нормальная доза радиации не несет в себе большой опасности для жизни или здоровья человека. При ее незначительном превышении развивается лучевая болезнь. Если же на человека воздействует большая доза облучения, наступает моментальная смерть.

Характеристики запорной арматуры типа МЗВ

Область использования и условия эксплуатации, определяется техническими характеристиками аппаратуры, среди которых:

  1. температура рабочего вещества должна находиться в пределах 5-75°С;
  2. внешняя температура окружающей среды может колебаться в диапазоне -15…+40°С;
  3. рабочее давление в трубопроводе должно находиться в диапазоне 1,0-1,6МПа;
  4. герметичность уплотнения соответствует классу А;
  5. высота устройства составляет 24см;
  6. длина конструкции 15см для задвижки МЗВ 50;
  7. номинальный диаметр арматуры составляет 50мм;
  8. тип соединения трубопровода с устройством (фланец/фланец).

Лучшие характеристики по параметру выдерживаемого устройством давления, обеспечивает конструкция, имеющая сечение в виде окружности, при этом овальная или прямоугольная форма сечения способны обеспечить меньшее пропускное давление.

Важно! Соединение, выполняемое при помощи двух фланцев, обеспечивает высокую надежность узла и требуемые показатели герметичности устройства. Среди положительных особенностей фланцевого соединения, следует отметить возможность легкого демонтажа арматуры в случае выхода из строя или при необходимости ремонта, надежное соединение трубопровода с задвижкой.. Регулирующая аппаратура этого класса исключает заклинивание частей механизма, возникающего в результате температурных колебаний

Она имеет продолжительный срок службы и характеризуется возможностью монтажа в горизонтальном и вертикальном направлениях. Наряду с этим, конструктивные особенности устройства, исключают возможность экстренного или аварийного перекрытия подачи рабочего вещества. К недостаткам этих приспособлений, следует отнести высокие требования, предъявляемые к точности монтажа задвижки. Это объясняется тем, что при значительной массе конструкции, любое нарушение параметров плоскостности может привести к выходу аппаратуры из строя

Регулирующая аппаратура этого класса исключает заклинивание частей механизма, возникающего в результате температурных колебаний. Она имеет продолжительный срок службы и характеризуется возможностью монтажа в горизонтальном и вертикальном направлениях. Наряду с этим, конструктивные особенности устройства, исключают возможность экстренного или аварийного перекрытия подачи рабочего вещества. К недостаткам этих приспособлений, следует отнести высокие требования, предъявляемые к точности монтажа задвижки. Это объясняется тем, что при значительной массе конструкции, любое нарушение параметров плоскостности может привести к выходу аппаратуры из строя.

Действие ионизирующей радиации

Под ионизирующим излучением понимают разновидность энергии, которую высвобождают атомы. Эта энергия представляет собой электромагнитные волны двух видов:

  • гамма-излучение;
  • рентгеновское излучение;
  • частицы (в виде альфа-, бета-частиц и нейтронов).

Собственно, радиоактивность — не что иное как результат спонтанного распада атомов. При распаде атомов всегда возникает избыток энергии или форма ионизирующего излучения. Уже упоминалось о нестабильности атомного ядра. Те его элементы, которые являются нестабильными, возникают при ядерном распаде и обладают ионизирующим излучением, получили название радионуклидов. В свою очередь, радионуклиды принято идентифицировать на основании типа излучения, испускаемого ими, его энергии и периода полураспада.

Ежедневно мы подвергаемся как естественному, так и искусственному радиационному излучению. Под естественными источниками следует понимать больше 60 веществ, средой обитания для которых служат почва, воздух и вода. Например, образование газа радона в естественных условиях происходит в горных породах. Каждый день мы получаем определённое количество радионуклидов, которые находятся в пище, воде и воздухе.

Если человек находится на слишком большой высоте, на него начинают воздействовать космические лучи. В целом, около 80% дозы радиации, получаемой нами каждый год — это фоновое излучение в виде наземных и космических источников. Уровни радиации в них различны. Иногда они могут составлять в 100 или 200 раз больше средней величины.

Кроме естественных источников ионизирующего излучения, на нас могут воздействовать и источники искусственного происхождения. Прежде всего, это производство ядерной энергии на атомных электростанциях. Медицинская аппаратура, применяемая в диагностических и лечебных целях, тоже является искусственным радиационным источником.

Степень повреждения живого организма радиационным воздействием определяется полученной дозой облучения либо поглощённой дозой. Её выражают в единицах, называемых греями (Гр). Что касается эффективной дозы, применяемой с целью измерения показателей излучения и уровня его вреда, её измеряют в зивертах (Зв). При этом учитывают тип радиационного воздействия и степень чувствительности того или иного органа либо ткани. Измерение уровня радиации в зивертах помогает определить, насколько серьёзным будет нанесённый ею урон.

Зиверт — большая единица, поэтому в целях измерения часто применяют милли- и микрозиверты. Кроме основного показателя радиации (её дозы), с помощью зивертов обозначают и скорость, с которой эта доза выделяется в окружающую среду (к примеру, микрозиверты в час или год).

Различают:

  • внутреннее воздействие излучения;
  • внешнее воздействие излучения.

Внутреннее воздействие происходит при вдыхании радионуклидов либо их поглощении любым путём. Например, они могут попасть в организм через рану или инъекцию. Прекращение внутреннего воздействия радионуклидов происходит при их самопроизвольном выведении из организма или в процессе лечения.

Внешнее радиационное воздействие происходит при попадании радиации из воздуха на кожные покровы или предметы одежды. Радионуклиды могут попасть через пылевые частицы, аэрозоль или любую жидкость.

Кроме того, воздействие может быть:

  • запланированным, например, в результате применения медицинского оборудования в лечебных или диагностических целях. Также к запланированному воздействию относят применение излучения в сферах промышленности и науки;
  • в результате действия уже существующих источников. Это радон, обнаруживаемый в жилых домах, либо фоновое излучение. В таких случаях необходимо принимать соответствующие контрольные меры.

И, наконец, последний тип воздействия — при чрезвычайной ситуации, возникшей в результате непредвиденного события. Такие ситуации требуют безотлагательных и экстренных мероприятий, так как речь может идти о ядерном ЧП либо намеренном действии злоумышленников.

Воздействие радиационного загрязнения на организм человека

Любое излучение, приводящее к образованию в окружающей среде электрических частиц с различными знаками, считается ионизирующим. Рассеянный радиационный фон постоянно сопровождает человека, его создает космическое излучение, влияние солнца, природные источники радионуклидов, другие составляющие биосферы.

Для работы в опасных условиях персонал защищают специальными костюмами, соблюдают нормы безопасности. Облучение организм получает на рабочем месте при физических и химических опытах, проведении дефектоскопии, медицинских исследованиях, геологических изысканиях и др.

Виды радиации

Существует несколько видов радиоактивности, которые можно разделить на неопасные, малоопасные и опасные. Подробно останавливаться на них не будем скорее это для понимания с, чем можно столкнуться в помещении. Итак, это:

  1. альфа (α) излучение;
  2. бета (β) излучение;
  3. гамма (γ) излучение;
  4. нейтронное;
  5. рентгеновское.

Альфа-излучение, бета и нейтронное представляют собой облучение частицами. Гамма и рентгеновское — это электромагнитное излучение.

В быту вам вряд ли предстоит встретиться с рентгеновским и нейтронным, так как они специфичны, а вот с остальными можно. Каждое из этих видов излучений имеет разную степень опасности, но, кроме этого, должно учитываться, какое количество облучения получил человек.

Диагностика

Появление лучевой болезни выявляется на основании первичных признаков

Пристальное внимание уделяется пациентам, которые побывали в ситуации, когда превышена безопасная доза радиации

Степень тяжести поражения определяется в ходе исследования образцов крови пострадавшего. Выясняется наличие анемии, ретикулоцитопении, лейкопении, СОЭ.О наличии лучевой болезни говорят признаки кровотечения в миелограмме. В дополнение к исследованию крови проводят следующие диагностические мероприятия:

  1. Забор соскобов кожных язв и проведение микроскопии.
  2. ЭЭГ.
  3. УЗИ брюшной полости.
  4. УЗИ щитовидной железы.
  5. УЗИ органов таза.

Одновременно с этим проводятся консультации с узкими специалистами: гематологом, эндокринологом, невропатологом и гастроэнтерологом. Они внимательно изучают клиническую картину болезни и результаты всех обследований.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector