Поглощенная доза

Эквивалентная доза

Установлено,
что при облучении одной и той же энергией
биологической ткани человека (то есть
при получении одной и той же дозы), но
различными видами лучей последствия
для здоровья будут разными. Например,
при облучении альфа-частицами тела
человека вероятность заболеть раком
значительно выше, чем при облучении
бета-частицами или гамма-лучами. Поэтому
для биологической ткани была введена
характеристика — эквивалентная доза.

Эквивалентная
доза (HTR)
— поглощенная доза в органе или ткани,
умноженная на соответствующий коэффициент
качества излучения WR
данного вида излучения R.

Введена
для оценки последствий облучения
биологической ткани малыми дозами
(дозами, не превышающими 5 предельно
допустимых доз при облучении всего тела
человека), то есть 250 мЗв/год. Ее нельзя
использовать для оценки последствий
облучения большими дозами.

Доза
эквивалентная равна:

HT.R
= DT.R
· WR,(8)

где
DT.R
— поглощенная доза биологической тканью
излучением R;
WR
— весовой множитель (коэффициент качества)
излучения R
(альфа-частиц, бета-частиц, гамма-квантов
и др.), учитывающий относительную
эффективность различных видов излучения
в индуцировании биологических эффектов
(табл. 1). Этот множитель зависит от многих
факторов, в частности от величины
линейной передачи энергии, от плотности
ионизации вдоль трека ионизирующей
частицы и т.д.

Формула
(8) справедлива для оценки доз как
внешнего, так и внутреннего облучения
только отдельных органов и тканей или
равномерного облучения всего тела
человека.

При
воздействии различных видов излучений
одновременно с различными взвешивающими
коэффициентами эквивалентная доза
определяется как сумма эквивалентных
доз для всех этих видов излучения R:

HT
= Σ
HT.R(9)

Установлено,
что при одной и той же поглощенной дозе
биологический эффект зависит от вида
ионизирующих излучений и плотности
потока излучения.

Примечание.
При
использовании формулы (8) средний
коэффициент качества принимают в данном
объеме биологической ткани стандартного
состава: 10,1% водорода, 11,1% углерода, 2,6 %
азота, 76,2 % кислорода.

Единица
измерения эквивалентной дозы в системе
СИ — Зиверт
(Зв).

Зиверт
— единица
эквивалентной дозы излучения любой
природы в биологической ткани, которая
создает такой же биологический эффект,
как и поглощенная доза в 1 Гр образцового
рентгеновского излучения с энергией
фотонов 200 кэВ, Используются также
дробные единицы — мкЗв, мЗв. Существует
и внесистемная единица — бэр
(биологический
эквивалент рада), которая постепенно
изымается из пользования.

1
Зв = 100
бэр.

Используются
также дробные единицы — мбэр, мкбэр.

Таблица
1. Коэффициенты качества излучения

Вид
излучения и диапазон энергии

Коэффициенты
качества WE

Фотоны
всех энергий

1

Электроны
всех энергий

1

Нейтроны
с энергией:

<
10 кэВ

5

от
10 кэВ до 100 кэВ

10

>
100 кэВ до 2 Мзв

20

>
2 МэВ до 20 МэВ

10

>
20 МэВ

5

Протоны
с энергией более 2 МэВ, кроме протонов
отдачи

5

Альфа-частицы,
осколки деления, тяжелые ядра

20

Примечание.
Все
значения относятся к излучению,
падающему на тело, а в случае внутреннего
облучения — испускаемому при ядерном
превращении.

Примечание.
Коэффициент
WR
учитывает зависимость неблагоприятных
биологических результатов облучения
в малых дозах от полной линейной передачи
энергии (ЛПЭ) излучения. В таблице 2
приведена зависимость весового
коэффициента качества WR
от ЛПЭ.

Таблица
2. Зависимость коэффициента качества
WR
от ЛПЭ

ЛПЭ

нЖд/м

≤0,56

3,7

8,5

≥28

в
воде

кэВ/мкм

≤3,5

7,0

23

63

≥175

WR

1

2

5

10

20

Мощность
эквивалентной дозы —
отношение приращения эквивалентной
дозы dH
за время dt
к
этому интервалу времени:

Единицы
измерения мощности эквивалентной дозы
мЗв/с, мкЗв/с, бэр/с, мбэр/с и т.д.

Дозиметрические величины и единицы их измерения

Когда излучение проходит сквозь материю, оно отдает свою энергию, ионизируя молекулы вещества. Эта энергия называется поглощенной дозой, единицей измерения которой является Грей (Gy, Гр). 1 Грей = 1 Джоуль / кг. Но поглощенная доза не является мерой для оценки вызванного ущерба для организма — должен быть учтен также тип излучения.

Один Грей альфа-излучения наносит вред организму в 20 раз больше, чем один Грей гамма- или бета-излучения. Это различие учитывается коэффициентом качества, отражающим способность излучения данного вида повреждать ткани организма.

Коэффициентом качества для альфа-излучения равен 20, а для бета- и гамма-излучения — 1.

Эквивалентная Доза

Эквивалентная доза (ДЭта) — это поглощенная доза (ДПТ) в органе или ткани (Т), умноженная на соответствующий взвешивающий коэффициент для данного вида излучения (коэффициент качества) WR. Единицей измерения эквивалентной дозы является Зиверт (Зв).

Эквивалентная доза = Поглощенная доза * коэффициент качества

При воздействии различных видов излучения с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения.

Взвешивающие коэффициенты для отдельных видов излучения (коэффициенты качества) WR

Эквивалентная эффективная доза (ДЭФТ) — величина, характеризующая облучение всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности, это сумма произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты (коэффициенты радиационного риска) WT.

Взвешивающие коэффициенты для разных органов и тканей (коэффициенты радиационного риска) WT

Эффективная доза измеряется в зивертах, (Зв). В ежедневной практике эффективная доза называется дозой облучения. Один зиверт — очень большая доза облучения. Уровень излучения обычно составляет несколько тысячных частей зиверта, и поэтому мы обычно говорим о миллизивертах, (мЗв).

В лучевой терапии ионизирующее излучение направлено только на определенную часть органа, чтобы избежать ненужного облучения здоровой ткани. Повреждение ткани зависит от объема, в котором было поглощено некоторое количество лучистой энергии. Маленький объем может выдерживать большую дозу чем большой объем

Таким образом, имеется важное различие между дозой на орган и дозой на все тело.

Чтобы сравнить действие излучения по риску повреждения, доза облучения органа преобразована в дозу облучения всего тела — эффективный эквивалент дозы.

Например:

а) эквивалентная доза облучения легких составила 0,02 мЗв. Коэффициент радиационного риска для легких составляет 0,12. Какова эффективная эквивалентная доза облучения на все тело?

Составляется пропорция: х — 1; 0,2 мЗв — 0,12. Отсюда: х=(1х0,2)/0,12.

Т.о. эффективная эквивалентная доза на все тело составляет: 1,67 мЗв.

б) Доза на тело составила 1 мЗв, какова эквивалентная доза облучения легких, если весовой коэффициент для легких равен 0,12?

Составляется пропорция: 1 мЗв — 1 (весовой коэффициент на все тело), х — 0,12; Тогда х= (1х0,12)/1. Т.о. экв.доза облучения пегкну составив 0 19 мЗв

Мощность Дозы

Мощность дозы — доза облучения в единицу времени. Она, обычно, представляется в мил- лизиверт в час — мЗв/ч (mSv/h).

Доза облучения работника зависит от мощности дозы источника так же, как расстояние зависит от скорости. Это проиллюстрировано на рисунке 2.9

Нормирование радиации

Целью контроля радиации является не просто измерение ее уровня, но и определение соответствий показателей установленным нормам. Критерии и нормативы безопасного уровня радиационного излучения прописаны в отдельных законах и общеустановленных правилах. Условия содержания техногенных и радиоактивных веществ регламентируются для следующих категорий:

  • Продуктов питания
  • Воды
  • Воздуха
  • Строительных материалов
  • Компьютерной техники
  • Медицинского оборудования.

Производители многих видов продуктовых или промышленных товаров обязаны по закону прописывать в условиях и сертификационных документах критерии и показатели соответствия радиационной безопасности. Соответствующие государственные службы довольно строго отслеживают различные отклонения или нарушения в этом плане.

Какова допустимая доза облучения при медицинских исследованиях?

Сколько же раз можно делать флюорографию, рентген или КТ, чтобы не нанести вреда здоровью? Есть мнение, что все эти исследования безопасны. С другой стороны, они не проводятся у беременных и детей. Как разобраться, что есть правда, а что — миф?

Оказывается, допустимой дозы облучения для человека при проведении медицинской диагностики не существует даже в официальных документах Минздрава. Количество зивертов подлежит строгому учету только у работников рентгенкабинетов, которые изо дня в день облучаются за компанию с пациентами, несмотря на все меры защиты. Для них среднегодовая нагрузка не должна превышать 20 мЗв, в отдельные годы доза облучения может составить 50 мЗв, в виде исключения. Но даже превышение этого порога не говорит о том, что врач начнет светиться в темноте или у него вырастут рога из-за мутаций. Нет, 20–50 мЗв — это лишь граница, за которой повышается риск вредного воздействия радиации на человека. Опасности среднегодовых доз меньше этой величины не удалось подтвердить за многие годы наблюдений и исследований. В тоже время, чисто теоретически известно, что дети и беременные более уязвимы для рентгеновских лучей. Поэтому им рекомендуется избегать облучения на всякий случай, все исследования, связанные с рентгеновской радиацией, проводятся у них только по жизненным показаниям.

Опасная доза облучения

Доза, за пределами которой начинается лучевая болезнь — повреждение организма под действием радиации — составляет для человека от 3 Зв. Она более чем в 100 раз превышает допустимую среднегодовую для рентгенологов, а получить её обычному человеку при медицинской диагностике просто невозможно.

Есть приказ Министерства здравоохранения, в котором введены ограничения по дозе облучения для здоровых людей в ходе проведения профосмотров — это 1 мЗв в год. Сюда входят обычно такие виды диагностики как флюорография и маммография. Кроме того, сказано, что запрещается прибегать к рентгеновской диагностике для профилактики у беременных и детей, а также нельзя использовать в качестве профилактического исследования рентгеноскопию и сцинтиграфию, как наиболее «тяжелые» в плане облучения.

Количество рентгеновских снимков и томограмм должно быть ограничено принципом строгой разумности. То есть исследование необходимо лишь в тех случаях, когда отказ от него причинит больший вред, чем сама процедура. Например, при воспалении легких приходится делать рентгенограмму грудной клетки каждые 7–10 дней до полного выздоровления, чтобы отследить эффект от антибиотиков. Если речь идет о сложном переломе, то исследование могут повторять еще чаще, чтобы убедиться в правильном сопоставлении костных отломков и образовании костной мозоли и т. д.

Есть ли польза от радиации?

Известно, что в номе на человека действует естественный радиационный фон. Это, прежде всего, энергия солнца, а также излучение от недр земли, архитектурных построек и других объектов. Полное исключение действия ионизирующей радиации на живые организмы приводит к замедлению клеточного деления и раннему старению. И наоборот, малые дозы радиации оказывают общеукрепляющее и лечебное действие. На этом основан эффект известной курортной процедуры — радоновых ванн.

Сила воздействия дозы и единицы измерения

Показатель интенсивности облучения – подстановка конкретной дозы под влияние определенного излучения за временную измерительную единицу. Этой величине присуща разность дозы (эквивалентной, поглощенной и др.) деленной на единицу измерения времени. Существует множество специально созданных единиц.

Поглощенная доза излучения определяется по формуле подходящей конкретному излучению и типу поглощаемого количества излучения (биологическому, поглощенному, экспозиционному и т.д.). Существует множество способов их вычисления, основанных на разных математических принципах, и используются различные измерительные единицы. Примерами измерительных единиц служат:

  1. Интегральный вид – грей-килограмм в СИ, вне системы измеряется в рад-граммах.
  2. Эквивалентный вид – зиверт в СИ, вне системы измеряется – в бэрах.
  3. Экспозиционный вид – кулон-килограмм в СИ, вне системы измеряется – в рентгенах.

Существуют и другие измерительные единицы, соответствующие иным формам поглощенной дозы излучения.

Способы индивидуальной защиты в случае радиационного загрязнения местности

Определены стандартные действия для населения, если на территории радиация. Смертельная доза облучения опасна для жизни, поэтому для уменьшения летальных исходов организовывается эвакуация людей в сооружения, которые по степени защиты делят на капитальные бомбоубежища, подвалы, деревянные строения и автомобили. Лучше всего защищает первый тип строения, остальные рассматриваются как экстренные временные пристанища.

К эффективным мерам относят защиту органов дыхания, воды и продовольственных припасов. Укрытие предметов первой необходимости делают заранее, если существует опасность выброса или взрыва. Употребляют противорадиационные медикаменты, не применяют для питания молоко в свежем виде.

Производится регулярная санитарная обработка и обеззараживание местности, при любом удобном случае люди эвакуируются за пределы зараженного района. Уменьшение внутреннего облучения за счет исключения захвата пыли обеспечивается респираторами, эффективными в 80% случаев. Меньший показатель дает марлевая повязка из четырех слоев, но используют все имеющиеся под рукой средства защиты. В качестве накидки применяют водоотталкивающие дождевики, в крайнем случае, полиэтиленовую пленку.

В заключение следует упомянуть, что радиационная загрязненность местности не уменьшается, опасность заражения человека сводится к минимуму применением индивидуальных средств защиты и контролем полученной дозы облучения с помощью дозиметров.

Поглощённая доза

При расширении круга известных видов ионизирующего излучения и сфер его приложения, оказалось, что мера воздействия ионизирующего излучения на вещество не поддаётся простому определению из-за сложности и многообразности протекающих при этом процессов. Важным из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определённому радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощённая доза. Она показывает, какое количество энергии излучения поглощено в единице массы облучаемого вещества и определяется отношением поглощённой энергии ионизирующего излучения к массе поглощающего вещества.

За единицу измерения поглощённой дозы в системе СИ принят грей (Гр). 1 Гр — это такая доза, при которой массе 1 кг передаётся энергия ионизирующего излучения в 1 джоуль. Внесистемной единицей поглощённой дозы является рад. 1 Гр = 100 рад.

Какое обследование самое опасное?

Для сравнения «вредности» различных видов рентгеновской диагностики можно воспользоваться средними показателями эффективных доз, приведенных в таблице. Это данные из методических рекомендаций № 0100/1659-07-26, утвержденных Роспотребнадзором в 2007 году. С каждым годом техника совершенствуется и дозовую нагрузку во время исследований удается постепенно уменьшать. Возможно в клиниках, оборудованных новейшими аппаратами, вы получите меньшую дозу облучения.

Часть тела,

орган

Доза мЗв/процедуру
пленочные цифровые
Флюорограммы
Грудная клетка 0,5 0,05
Конечности 0,01 0,01
Шейный отдел позвоночника 0,3 0,03
Грудной отдел позвоночника 0,4 0,04
Поясничный отдел позвоночника 1,0 0,1
Органы малого таза, бедро 2,5 0,3
Ребра и грудина 1,3 0,1
Рентгенограммы
Грудная клетка 0,3 0,03
Конечности 0,01 0,01
Шейный отдел позвоночника 0,2 0,03
Грудной отдел позвоночника 0,5 0,06
Поясничный отдел позвоночника 0,7 0,08
Органы малого таза, бедро 0,9 0,1
Ребра и грудина 0,8 0,1
Пищевод, желудок 0,8 0,1
Кишечник 1,6 0,2
Голова 0,1 0,04
Зубы, челюсть 0,04 0,02
Почки 0,6 0,1
Молочная железа 0,1 0,05
Рентгеноскопии
Грудная клетка 3,3
ЖКТ 20
Пищевод, желудок 3,5
Кишечник 12
Компьютерная томография (КТ)
Грудная клетка 11
Конечности 0,1
Шейный отдел позвоночника 5,0
Грудной отдел позвоночника 5,0
Поясничный отдел позвоночника 5,4
Органы малого таза, бедро 9,5
ЖКТ 14
Голова 2,0
Зубы, челюсть 0,05

Очевидно, что самую высокую лучевую нагрузку можно получить при прохождении рентгеноскопии и компьютерной томографии. В первом случае это связано с длительностью исследования. Рентгеноскопия обычно проводится в течение нескольких минут, а рентгеновский снимок делается за доли секунды. Поэтому при динамичном исследовании вы облучаетесь сильнее. Компьютерная томография предполагает серию снимков: чем больше срезов — тем выше нагрузка, это плата за высокое качество получаемой картинки. Еще выше доза облучения при сцинтиграфии, так как в организм вводятся радиоактивные элементы. Вы можете прочитать подробнее о том, чем отличаются флюорография, рентгенография и другие лучевые методы исследования.

Чтобы уменьшить потенциальный вред от лучевых исследований, существуют средства защиты. Это тяжелые свинцовые фартуки, воротники и пластины, которыми обязательно должен вас снабдить врач или лаборант перед диагностикой. Снизить риск от рентгена или компьютерной томографии можно также, разнеся исследования как можно дальше по времени. Эффект облучения может накапливаться и организму нужно давать срок на восстановление. Пытаться пройти диагностику всего тела за один день неразумно.

Экспозиционная и эквивалентная дозы.

ДО

Экспозиционная
доза излучения

– характеристика ионизационной
способности рентгеновского и -излучения,
измеряемая по ионизации воздуха.

«СИ» — Кулон/кг
(Кл/кг)

Внесистемная —
рентген (Р)

Рентген
– внесистемная единица экспозиционной
дозы рентгеновского и гамма-излучения,
равная 258 мкКл/кг (названа в честь
немецкого физика В.К. Рентгена –
1845-1923).

ДЕД
Эквивалентная
доза излучения

– поглощенная
доза излучения мера Дп
, умноженная на средний коэффициент k
качества излучения для биологической
ткани стандартного состава и на
модифицирующий фактор N
– произведение коэффициентов, которое
в настоящее время принимается равным
единице:

ДЕД
= Д
ПkN
=

Д
jkjNj
,

где j
– индекс вида и энергии излучения.

Единица измерения

3иверт (3в) В «СИ»
— Грей (Гр)

Внесистемная –
бэр (биологический эквивалент рентгена)

1 БЭР = 0,01Гр (3в)

Стандартный состав
мягкой биологической ткани принимается
следующим (по массе): 10,1% водорода, 11,1%
углерода, 2,6% азота, 76,2% кислорода.

Коэффициент
качества излучения kпредназначен
для учета влияния микрораспределения
поглощенной энергии на размер вредного
биологического эффекта. Он является
функцией линейной передачи данного
излучения в воде:

L
кэВ/мкм

 3,5

7,0

23

52

 175

k

1

2

5

10

20

и выбирается на
основе имеющихся значений коэффициента
относительной биологической эффективности
ОБЭ. Однако значения kне соответствуют
ОБЭ по ряду наблюдаемых вредных эффектов,
например стохастическому эффекту при
низком уровне поглощенной дозе и
нестохастическому эффекту при большой
дозе у человека.

Коэффициент ОБЭ
– отношение поглощенной дозы Д
образцового излучения , вызывающей
определенный биологический эффект, к
поглощенной дозе Д рассматриваемого
излучения, вызывающей тот же самый
биологический эффект.

В качестве
образцового излучения используют
рентгеновское излучение с напряжением
генерирования 180 – 250 кВ и со средней
ЛПЭ, равной 3 кэВ/мкм воды.

Интегральная
доза излучения

– общая доза ионизирующего излучения,
поглощенная всей массой облучаемого
тела или среды.

«СИ» — Джоуль (Дж),
Кулон (Кл)

Внесистемные –
грамм·рад (г·рад), грамм·рентген (г·Р).

Р

Соответственно
единицей мощности дозы является: для
поглощения – Вт/кг и рад/с; для
экспозиционной дозы – А/кг, Р/час или
мкР/с.

Между поглощенными
и экспозиционными дозами существует
следующая связь:

Дn=fДо,

где f
– переходный коэффициент, зависящий
от облучаемого вещества и энергии
фотонов. Для воздуха
f=0,88
и мало зависит от энергии фотонов.

Дn=fвозд.До=0,88До

Для воды и мягких
тканей тела человека f=1,
следовательно, поглощенная доза в рядах
численно равна соответствующей дозе в
рентгенах. Это и обуславливает удобство
и использования внесистемных единиц –
рад и рентген. Для костной ткани f
уменьшается с увеличением энергии
фотонов ~ от 4,5 до 1.

Коллективная
эквивалентная доза

Коллективная
эквивалентная доза
— сумма индивидуальных
Дi
эквивалентных доз у данной группы
людей: S=
ДiРI
где РI
— число лиц в данной группе , получивших
эквивалентную дозу Дi
. Может быть определена также так :

где
Р(D)dD
– число лиц в данной группе , получивших
эквивалентную дозуна все тело или на
отдельный орга в диапазоне дозы от D
до dD.

Фон
за счет естественных радиоактивных
источников (космические лучи,
радиоактивность недр, воды, радиоактивность
ядер, входящих в состав человеческого
тела и др.) соответствует приблизительно
дозе 125 мбэр. Предельно допустимой
эквивалентной дозой при профессиональном
облучении является 5 бэр за год. Летальной
дозой от -излучений
считается 600 бэр.

Единица измерения дозы облучения / дозы радиации Зиверт. Единица измерения радиации Зиверт. Опасные и повседневные уровни радиации.

Зиверт (обозначение: Зв, Sv) — единица измерения СИ эффективной и эквивалентной доз ионизирующего излучения (используется с 1979 г.). 1 зиверт — это количество энергии, поглощенное килограммом биологической ткани, равное по воздействию поглощенной дозе 1 Гр (1 Грей).

Через другие единицы измерения СИ зиверт выражается следующим образом:1 Зв = 1 Дж/кг = 1 м2 / с2 (для излучений с коэффициентом качества, равным 1,0)

  • Равенство зиверта и грея показывает, что эффективная доза и поглощeнная доза имеют одинаковую размерность, но не означает, что эффективная доза численно равна поглощeнной дозе. При определении эффективной дозы учитывается биологическое воздействие радиации, она равна поглощённой дозе, умноженной на коэффициент качества, зависящий от вида излучения и характеризует биологическую активность того или иного вида излучения. Имеет большое значение для радиобиологии.
  • Единица названа в честь шведского учeного Рольфа Зиверта.
  • Раньше (а иногда и сейчас) использовалась единица бэр(биологический эквивалент рентгена), англ. rem (roentgen equivalent man) — устаревшая внесистемная единица измерения эквивалентной дозы. 100 бэр равны 1 зиверту. Также верно что 100 рентген = 1 зиверт с оговоркой, что рассматривается биологическое действие рентгеновского излучения.

Кратные и дольные единицы зиверта:

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Зв деказиверт даЗв daSv 10-1 Зв децизиверт дЗв dSv
102 Зв гектозиверт гЗв hSv 10-2 Зв сантизиверт сЗв cSv
103 Зв килозиверт кЗв kSv 10-3 Зв миллизиверт мЗв mSv
106 Зв мегазиверт МЗв MSv 10-6 Зв микрозиверт мкЗв µSv
109 Зв гигазиверт ГЗв GSv 10-9 Зв нанозиверт нЗв nSv
1012 Зв теразиверт ТЗв TSv 10-12 Зв пикозиверт пЗв pSv
1015 Зв петазиверт ПЗв PSv 10-15 Зв фемтозиверт фЗв fSv
1018 Зв эксазиверт ЭЗв ESv 10-18 Зв аттозиверт аЗв aSv
1021 Зв зеттазиверт ЗЗв ZSv 10-21 Зв зептозиверт зЗв zSv
1024 Зв йоттазиверт ИЗв YSv 10-24 Зв йоктозиверт иЗв ySv
     
применять не рекомендуется

Допустимые и смертельные дозы радиации для человека

  • Миллизиверт часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).
  • Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апр. 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации».
  • Естественное фоновое ионизирующее излучение в среднем равно 2,4 мЗв/год. При этом разброс значений фонового излучения в разных точках Земли составляет 1—10 мЗв/год.

При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть наступает в 50 % случаев:

  • при дозе порядка 3-5 Зв из-за повреждения костного мозга в течение 30—60 суток;
  • 10 ± 5 Зв из-за повреждения желудочно-кишечного тракта и лeгких в течение 10—20 суток;
  • > 15 Зв из-за повреждения нервной системы в течение 1—5 суток.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector