Лучевая болезнь

Содержание:

Последствия лучевой болезни

Даже при своевременном выявлении заболевания и успешном лечении окончательно избавиться от последствий недуга невозможно. Радиация наносит непоправимый вред организму человека, который зачастую нельзя восполнить дальнейшим лечением. От формы и степени лучевой болезни будет зависеть, и какие последствия будет иметь это заболевание для человека.

Самыми основными осложнениями облучения можно назвать онкологические заболевания и уменьшение продолжительности жизни. Нередко можно встретить и различные генетические отклонения, и мутации у детей, рожденных у матерей, получивших дозу радиацию. Еще недостаточно изучено насколько сильные мутационные процессы могут происходить в организме человека вследствие облучения.

Но чем быстрее будет оказана качественная помощь, тем меньше вероятных последствий может быть в будущем. Своевременное обнаружение заболевания позволяет провести эффективный курс реабилитации. Если курс будет успешен, то пациент начнет восстанавливаться уже через несколько месяцев после начала лечения. Все это зависит не только от качества медицинской помощи, но и от степени и дозы лучевой болезни.

Наиболее эффективным считается лечение тех заболеваний, которые были вызваны слабыми дозами излучения и в организме не успело произойти необратимых изменений. Если лучевая болезнь развивается медленно, то шансов вылечить пациента и избежать осложнений намного больше.

А для того, чтобы не допустить всех этих последствий следует быть в курсе уровня излучения там, где вы проводите большую часть времени. Лаборатория «ЭкоТестЭкспресс» проведет замеры радиации при помощи профессиональных приборов и предоставит вам все необходимые результаты проверки в виде официальных документов. Поэтому вы будете осведомлены об уровне излучения и о том, какие профилактические работы следует провести для улучшения показателей.

Как радиация может попасть в организм

Люди ежедневно подвергаются облучению естественными, а так же искусственно созданными бытовыми и производственными радионуклидами или радиоактивными элементами. Источники ионизирующего излучения окружают человека повсюду:

  1. космические или альфа-лучи;
  2. солнечные термоядерные реакции;
  3. самопроизвольный радиоактивный распад природной радиации. Радон, уран, рубидий;
  4. искусственно созданные радиоактивные изотопы;
  5. ядерные реакторы. Выброс радиоактивного стронция — 90, криптона — 85, цезия — 137;
  6. современные ускорители элементарных заряженных частиц, рентген, МРТ и лучевая терапия. Используются в медицинских учреждениях для лечения онкологических заболеваний;
  7. внутреннее облучение. Проникновение радиации осуществляется путем вдыхаемого воздуха, потребляемой жидкости и пищи. Полоний, свинец, уран.

Невидимое ионизирующее излучение приводит к поражению всех без исключения систем жизненно важных органов, провоцирует самое опасное заболевание, как лучевая болезнь.

Действие радиации на организм

Последствие радиоактивного загрязнения сказывается на здоровье человека в самых тяжелых вариантах последствий. Ожог кожи, лучевое облучение, разрушения костей, изменение состава крови возникает при превышении радиации допустимого уровня. При этом низкие дозы, полученные от радиоактивных элементов, увеличивают риск возникновения разных заболеваний, например, рака. Полученную организмом дозу, принято классифицировать по физической величине измерения, называемой Зиверт. Это эффективная единица измерения, позволяющая оценить силу ионизирующего излучения с точки зрения объёма нанесённого вреда. Абсолютное значение зиверта является большим. На практике используются миллизиверт (мЗв), микрозиверт (мкЗв).

Физический смысл действия радиации состоит в реализации следующих явлений:

  1. Электрического взаимодействия с тканями. За очень короткий срок прохождения излучения через органы, ткани человека оно провоцирует ионизацию атомов, разрушая живые клетки.
  2. Физико-химические реакции. Ионизированный атом, появившийся свободный электрон не могут долго находиться в новом состоянии. Их участие в цепи химических реакций, приводит к образованию новых молекул соединений вредных для организма, например «свободных радикалов».
  3. Химические процессы. Появившиеся «свободные радикалы» мешают нормальному функционированию живых клеток, модифицируя их. Процессы происходят в течение миллионных долей секунды.
  4. Биологические изменения. Они появляются сразу или через годы, постепенно нарушая важные процессы в любом органе человека.

Международными требованиями по защите от радиации в 1990 году, а также нормативными документами НРБ-96 (1996 г.) оговорены следующие значения доз:

  1. Значения радиации 1.5 Зв (150 бэр), полученной на протяжении года или при кратковременном облучении дозой 0,5 Зв (50 бэр) могут создать вредные эффекты.
  2. Лучевая болезнь развивается после поглощения дозы в 1-2 Зв (100-200 бэр). Получив свыше 6 Зв, состояние человека характеризуют смертельной четвёртой степенью заболевания.
  3. Естественное радиоактивное излучение имеет величину, соответствующую 0,05 до 0,2 мкЗв/ч, т.е. от 0,44 до 1,75 мЗв за год. Во время медицинской диагностики человек получает 1,4 мЗв за год.

На источник излучения изредка можно наткнуться

Возможно, эти мифы живучи потому, что облучиться можно не только рядом со сломавшимся ядерным реактором или в кабинете врача. Источники излучения иногда забывали в списанных приборах для поиска скрытых дефектов, были зафиксированы случаи потери медицинских источников, а несколько лет назад школьник из Москвы купил на радиорынке рентгеновскую трубку, подключил ее дома и заработал лучевой ожог руки. В Южной Америке случилась еще более вопиющая история. В больнице был потерян светящийся радиоактивный порошок, который местные дети нашли и использовали в качестве грима. Вечеринка закончилась грустно.

Чтобы такого избежать, нужно просто не тащить в дом неизвестные предметы и не разбирать их на части. В конце концов, что такого необходимого для хозяйства можно найти в подвале больницы? А если вы считаете себя опытным исследователем заброшенных пространств, то наверняка слышали, что приличный сталкер оставляет после себя объект в том же виде, в котором застал.

Действие проникающей радиации

Под проникающей радиацией понимают нейтронные потоки и излучения, которые исходят из места ядерного взрыва. Действие такой волны продолжается от 10 до 15 минут. В случаях, когда взрыв происходит под водой, радиацию полностью поглощают её толща и пары. В приземных воздушных слоях поникающее излучение распространяется от эпицентра взрыва на расстояние до 3 км.

Существуют разные виды ядерных взрывов с одним либо двумя факторами поражения, связанными с излучениями, имеющими различное происхождение. Факт проникающей радиации является общей чертой для всех ядерных взрывов. Что касается дополнительного фактора, в данном случае происходит поражение радиацией окружающей местности.

Проникающая радиация может иметь источники в виде:

  • ядерной реакции. Её продолжительность составляет примерно 0,07 мк/секунду с выпуском почти 100% квантовых и нейтронных частиц;
  • осколков деления. Они выпускают нейтроны через 2-3 секунды после взрыва. Выпуск квантов происходит дольше;
  • наведённой активностью. Она появляется, когда атомы воздуха захватывают нейтроны.

Исходя из этого становится ясно, что основной энергетический поток при проникающем радиоактивном воздействии исходит в первые секунды после того как произошёл взрыв. Продолжительность остаточных излучений может наблюдаться ещё в течение длительного времени.

Воздействие излучения и нейтронного потока на объекты происходит в одно и то же время. Именно по этой причине уже давно обозначено понятие суммарной дозы. Когда в воздухе происходит распространение лучей и нейтронов, оно сопровождается их многократным рассеиванием. Таким образом, проникающая радиация действует не только с того направления, в котором произошёл взрыв, но и с любого другого, хотя и меньше.

Уровень поражающего действия проникающей радиации также определяет величина дозы, зависящая от ядерных боеприпасов. Мощность взрыва и его разновидность тоже имеют огромное значение, равно как и расстояние от его центра. Интересным фактом является то, что если речь идёт о взрывах, имеющих малую и среднюю мощность, проникающая радиация будет воздействовать на объекты гораздо меньше, чем ударная волна и световое излучение. В качестве основного фактора поражения проникающую радиацию рассматривают, когда взрываются боеприпасы, имеющие малую и сверхмалую мощность либо боеприпасы на нейтронной основе. У них излучение возникает в результате процессов, происходящих с быстрыми нейтронами.

Единицы измерения радиации и ее предельные нормы

Для получения результатов измерений важно учесть интенсивность радиации, определяя опасность самого ее источника и оценивая период времени, который можно провести около него без негативных последствий. Исследованиями и реакциями радиационного излучения на живые организмы занимался в Швеции ученый Рольф Зиверт

Именно в его честь названа единица измерения доз ионизирующего излучения – зиверт (Зв/час) – это величина энергии, которую поглощает один килограмм биологической ткани за один час, равная по воздействию полученной дозе гамма-излучения в 1 Гр (грэй). К примеру, облучение в 5 – 6 зивертов для человека смертельно.

На территории России функции нормирования и контроля над радиационным облучением населения возложены на Госкомсанэпиднадзор. В соответствии с действующим законодательством и нормативной документацией он устанавливает пределы допустимых значений радиации, а также иные требования для ее ограничения.

Безопасным принят уровень радиации, не превышающий 0,5 микрозиверт в час – это максимально допустимый предел дозу облучения. Если его значение составляет 0,2 микрозиверта в час, то для человека это благоприятные условия – радиационный фон находится в пределах нормы. Поглощенная доза облучения имеет свойство накапливаться в человеческом организме.

В каких единицах измеряется радиоактивность?

Мерой радиоактивности радионуклида в соответствии с системой измерений СИ, является его активность, которая измеряется в Беккерелях (Бк). Один Бк равен 1 ядерному превращению в секунду. Кроме того, в качестве меры радиоактивности широко используется не системная величина Кюри (Ки) и ее производные (милликюри, микрокюри и т.д.). Численно 1 Кюри = 3.7*1010 Бк, а 1 Бк = 0.027нКи (наноКюри). Содержание активности в единице массы вещества характеризуется удельной активностью, которая измеряется в Бк/кг (л).

В каких единицах измеряется ионизирующее излучение (рентгеновское и гамма)?

Мерой воздействия ионизирующего излучения является экспозиционная доза и измеряется она в Рентгенах (Р) и его производных (млР, мкР), а количественную сторону его характеризует мощность экспозиционной дозы,, которая измеряется в Рентгенах/сек (Р/сек.) и его производных (млР/час, мкР/час, мкР/сек).

Рентген – это доза рентгеновского или гамма-излучения в воздухе, при которой на 0.001293 г воздуха образуются ионы с суммарным зарядом в одну электростатическую единицу количества электричества каждого знака.

Эквивалентная доза – она равна произведению поглощенной дозы на средний коэффициент качества ионизирующего излучения (Например: коэффициент качества гамма-излучения составляет 1, а альфа-излучения – 20).

Единица измерения эквивалентной дозы – бэр (биологический эквивалент рентгена) и его дольные единицы: миллибэр (мбэр) микробэр ( мкбэр) и т.д., 1 бэр = 0,01 Дж/кг-1. Единица измерения эквивалентной дозы в системе СИ – зиверт, Зв,

1Зв=1Дж/кг-1= 100 бэр.

1 мбэр = 1*10-3 бэр; 1 мкбэр = 1*10-6 бэр;

Поглощенная доза — количество энергии ионизирующего излучения которое поглощено в элементарном объеме, отнесенной к массе вещества в этом объеме.

Единица поглощенной дозы – рад и его дольные значения, 1 рад = 0,01 Дж/кг.

Единица поглощенной дозы в системе СИ – грей, Гр, 1Гр=100рад=1Дж/кг-1

Доза – это сокращенное название эквивалентной дозы — мощности экспозиционной дозы умноженной на время экспозиции, единица измерения бэр.

Мощность дозы – сокращенное название мощности эквивалентной дозы.

Мощность эквивалентной дозы – это отношение приращения эквивалентной дозы за интервал времени к этому интервалу времени, единица измерения бэр/час, Зв/час.

В каких единицах измеряется альфа- и бета-излучение?

Количество альфа- и бета-излучения определяется как величина плотности потока частиц с единицы площади, в единицу времени a-частиц*мин/см2, b-частиц*мин/см2.

Какие заболевания может вызвать радиация

Чем радиация опасна для человека, может ли она вызвать тяжелые патологические состояния? Излучение, которое исходит от радиоактивных элементов, несет смертельную опасность для организма. Разовый массивный контакт с ними может закончиться смертью.

Ниже мы рассмотрели заболевания и патологические процессы, которые могут возникнуть вследствие влияния радиации на организм человека.

Острая лучевая болезнь

Это состояние развивается при однократном массивном облучении человека. Такое состояние встречается нечасто.

Оно может развиться во время каких-то техногенных аварий и катастроф.

Степень клинических проявлений зависит от количества радиации, подействовавшей на организм человека.

При этом могут поражаться все органы и системы.

Хроническая лучевая болезнь

Это состояние развивается при длительном контакте с радиоактивными веществами. Чаще всего развивается у людей, которые взаимодействуют с ними по долгу службы.

При этом клиническая картина может нарастать медленно, на протяжении многих лет. При продолжительном и длительном контакте с радиоактивными источниками облучения происходит поражение нервной, эндокринной, кровеносной систем. Также страдают почки, происходят сбои во всех обменных процессах.

Хроническая лучевая болезнь имеет несколько стадий. Она может протекать полиморфно, клинически проявляясь поражением различных органов и систем.

Онкологические злокачественные патологии

Учеными доказано, что радиация может спровоцировать онкологические патологии. Чаще всего развивается рак кожи или щитовидной железы, также нередки случаи появления лейкоза – рака крови у людей, страдающих от острой лучевой болезни.

Согласно статистическим данным, количество онкологических патологий после аварии на Чернобыльской АЭС возросло в десятки раз на территориях, пораженных радиацией.

Виды лучевого воздействия

Радиация вызывает соматические, когда страдает непосредственно облученный, и генетические, то есть влияющие на развитие потомства, поражения. Соматические эффекты в свою очередь делятся на две группы:

  • стохастические (вероятностные) – поражения, для которых отсутствует дозовый порог и частота их возникновения увеличивается с величиной дозы полученного облучения;
  • нестохастические (детерминированные) – поражения, образование которых напрямую зависит от дозы облучения. Обычно обнаруживаются в тех случаях, когда число погибших от облучения клеток достигает критического значения и приводит к нарушению функции пораженного органа.

К стохастическим поражениям относятся канцерогенные опухоли, новообразования, поражения крови и генетические мутации (врожденные психические и физические уродства), которые из-за длительности латентного периода облучения, длящегося иногда десятки лет, трудно обнаружить. Вероятность их возникновения мало зависит от мощности полученного облучения, а определяется суммарной накопленной дозой радиации.

Измерение радиации

Принятые единицы измерения включают рентген, рад и рем. Доза поглощенной радиации (рад) — это количество радиационной энергии, поглощенной на единицу массы. Поскольку биологическое повреждение на рад варьирует в зависимости от типа радиации (например, биологический ущерб выше для нейтронов, чем для рентгеновской или гамма-радиации), то доза в рад корректируется фактором качества; единицей результирующей эффективной дозы является радиационный эквивалет человека (рем). За пределами США и в научной литературе используют Международную систему единиц СИ, в которой рад заменен Греем, а рем — Зивертом; 1 Гр=100 рад и 1 Зв=100 рем. Рад и рем (следовательно, Грей и Зиверт) по существу равны (т.е. фактор качества равен 1) при описании гамма- и бета-радиации.

Почему внутреннее облучение гораздо опаснее внешнего?

Радиация проникает в наш организм двумя способами – от внешних источников и изнутри. Первый вид облучения менее опасен, так как частично нас защищают от него одежда, стены зданий, различные предметы.

Перед источниками радиоактивного загрязнения, проникшими в организм, мы совершенно беззащитны. Попадая внутрь с продуктами питания и водой, они беспрепятственно воздействуют на желудок, кишечный тракт, почки и другие жизненно важные органы.

При одинаковом количестве радиоактивных веществ облучение изнутри опаснее потому, что:

  • Продолжительность воздействия значительно увеличивается, так как радионуклиды «бомбардируют» здоровые клетки постоянно.
  • Концентрация радиоактивных веществ в отдельных органах достигает очень высоких значений из-за неравномерного распределения источников радиации в тканях.
  • Воздействие наиболее опасного альфа-излучения ничем не ограничено, в то время как при внешнем обучении эти радиоактивные частицы частично задерживаются роговым слоем кожи.
  • Доза радиации становится максимальной из-за предельно малого расстояния от радиоактивных веществ до органов и тканей.
  • Отсутствуют возможности использовать способы защиты (удаление от источника, экранирование).

При внутреннем облучении радиацией через питание опасными становятся все виды ионизирующего излучения. Их разрушительное действие сохраняется до тех пор, пока радиоактивные вещества не распадутся или не покинут организм в результате физиологического обмена веществ.

Какие продукты больше подвержены радиоактивному загрязнению?

Самое большое количество радионуклидов накапливают:

  • Овощи: капуста, кабачки, помидоры, огурцы, лук, чеснок, перец, морковь.
  • Ягоды: смородина, крыжовник, клюква, черника.
  • Фрукты: яблоки, вишня, груша (в основном загрязняются радиоактивными веществами через почву).
  • Грибы: польские, рыжики, маслята обыкновенные, лисички, грузди, волнушки, подберезовики.
  • Рыба: щука, карась, окунь, линь.
  • Мясо: говядина, баранина, птица.

Как уменьшить вредное воздействие радиации через питание?

Молоко. Загрязненное радиацией молоко необходимо переработать с отделением водной фазы, в которой остаются радионуклиды цезия и стронция. В полученных таким образом сливках и жирном молоке количество радиоактивных веществ существенно снижается. При изготовлении сыров способом молочнокислого сбраживания удается уменьшить содержание радиоактивных веществ до 12 %. Сыворотку и пахту, полученные после переработки молочных продуктов, следует утилизировать. Концентрация радионуклидов в них настолько высока, что эти продукты нельзя скармливать даже животным.

Свежее мясо. При варке мяса 60 % радиоактивных веществ переходит в бульон, поэтому первую воду через 10 минут после закипания необходимо слить. Перед приготовлением мясо желательно замочить в подсоленной воде на полчаса.

Овощи. Уменьшить радиоактивное загрязнение всех овощей и фруктов помогает снятие кожуры, промывание и замачивание в воде с добавлением соли. Так, 4-часовое вымачивание в воде картофеля выводит из корнеплодов до 40 % радиоактивных веществ. Удалить от 30 % до 50 % радиоактивных веществ из моркови, свеклы и томатов помогает также тушение.

Грибы. Чтобы снизить содержание цезия-137 в грибах, их нужно очистить от остатков мха и почвы, снять кожицу со шляпок (у некоторых видов). Затем замочить на 2 часа, после чего отварить в течение 40-60 минут в подсоленной и подкисленной уксусом воде. Отвар за это время следует слить 3 раза. Эти меры дают возможность полакомиться даже теми грибами, первоначальный уровень загрязнения которых был высок.

Как помешать процессу накопления радионуклидов в организме?

Риск вредного воздействия радиации через питание снижается при употреблении в пищу:

  • витаминно-минеральных комплексов (по рекомендации врача);
  • продуктов с высоким содержанием калия – изюма, бананов, кураги;
  • продуктов, богатых кальцием – сыров, творога, сырой моркови, капусты;
  • цветных овощей и ягод – свеклы, клубники, черники;
  • продуктов с высоким содержанием серных аминокислот – яичного белка, мяса, рыбы, бобовых, творога;
  • пищевых волокон, которые содержатся в крупах, овощах, фруктах, отрубях.

Мощную защиту от вредного воздействия радиации обеспечивает микроэлемент селен. Он содержится в грибах вешенках, морепродуктах, кокосе, печени птицы, куриных яйцах, чесноке.

Чтобы вывести радионуклиды из организма, врачи рекомендуют также пить больше жидкостей. В некоторых случаях назначают прием отваров мочегонных трав курсами. Полезны и продукты с высоким содержанием пектина – яблоки, слива, свежие соки с мякотью, мармелад, фруктовые желе.

Действие ионизирующей радиации

Под ионизирующим излучением понимают разновидность энергии, которую высвобождают атомы. Эта энергия представляет собой электромагнитные волны двух видов:

  • гамма-излучение;
  • рентгеновское излучение;
  • частицы (в виде альфа-, бета-частиц и нейтронов).

Собственно, радиоактивность — не что иное как результат спонтанного распада атомов. При распаде атомов всегда возникает избыток энергии или форма ионизирующего излучения. Уже упоминалось о нестабильности атомного ядра. Те его элементы, которые являются нестабильными, возникают при ядерном распаде и обладают ионизирующим излучением, получили название радионуклидов. В свою очередь, радионуклиды принято идентифицировать на основании типа излучения, испускаемого ими, его энергии и периода полураспада.

Ежедневно мы подвергаемся как естественному, так и искусственному радиационному излучению. Под естественными источниками следует понимать больше 60 веществ, средой обитания для которых служат почва, воздух и вода. Например, образование газа радона в естественных условиях происходит в горных породах. Каждый день мы получаем определённое количество радионуклидов, которые находятся в пище, воде и воздухе.

Если человек находится на слишком большой высоте, на него начинают воздействовать космические лучи. В целом, около 80% дозы радиации, получаемой нами каждый год — это фоновое излучение в виде наземных и космических источников. Уровни радиации в них различны. Иногда они могут составлять в 100 или 200 раз больше средней величины.

Кроме естественных источников ионизирующего излучения, на нас могут воздействовать и источники искусственного происхождения. Прежде всего, это производство ядерной энергии на атомных электростанциях. Медицинская аппаратура, применяемая в диагностических и лечебных целях, тоже является искусственным радиационным источником.

Степень повреждения живого организма радиационным воздействием определяется полученной дозой облучения либо поглощённой дозой. Её выражают в единицах, называемых греями (Гр). Что касается эффективной дозы, применяемой с целью измерения показателей излучения и уровня его вреда, её измеряют в зивертах (Зв). При этом учитывают тип радиационного воздействия и степень чувствительности того или иного органа либо ткани. Измерение уровня радиации в зивертах помогает определить, насколько серьёзным будет нанесённый ею урон.

Зиверт — большая единица, поэтому в целях измерения часто применяют милли- и микрозиверты. Кроме основного показателя радиации (её дозы), с помощью зивертов обозначают и скорость, с которой эта доза выделяется в окружающую среду (к примеру, микрозиверты в час или год).

Различают:

  • внутреннее воздействие излучения;
  • внешнее воздействие излучения.

Внутреннее воздействие происходит при вдыхании радионуклидов либо их поглощении любым путём. Например, они могут попасть в организм через рану или инъекцию. Прекращение внутреннего воздействия радионуклидов происходит при их самопроизвольном выведении из организма или в процессе лечения.

Внешнее радиационное воздействие происходит при попадании радиации из воздуха на кожные покровы или предметы одежды. Радионуклиды могут попасть через пылевые частицы, аэрозоль или любую жидкость.

Кроме того, воздействие может быть:

  • запланированным, например, в результате применения медицинского оборудования в лечебных или диагностических целях. Также к запланированному воздействию относят применение излучения в сферах промышленности и науки;
  • в результате действия уже существующих источников. Это радон, обнаруживаемый в жилых домах, либо фоновое излучение. В таких случаях необходимо принимать соответствующие контрольные меры.

И, наконец, последний тип воздействия — при чрезвычайной ситуации, возникшей в результате непредвиденного события. Такие ситуации требуют безотлагательных и экстренных мероприятий, так как речь может идти о ядерном ЧП либо намеренном действии злоумышленников.

Электромагнитное излучение и человек

Электромагнитный фон естественного происхождения сопровождал человека всегда. Но с развитием технологий и прорывом в научной отрасли люди принялись создавать радиацию искусственного происхождения. Это ухудшило ситуацию, значительно повлияв на здоровье людей.

Каждый вид излучения отличается друг от друга:

  • по мощности,
  • по характеру воздействия,
  • длиной волны.

Механизм распространения облучения в любом случае сохраняется одинаковым. Это означает, что любое излучение в формате электромагнитных волн способно распространяться в воздухе. Лучи представляют собой смешение электрического и магнитного поля, которое меняется согласно определенным правилам. Схематическая классификация излучения предусматривает сортировку на рабочие диапазоны.

Функционирование человеческого организма базируется на электромагнитной природе. Это означает, что все ткани и системы органов подвержены любому виду радиации. В обычной жизни фоновое облучение не несет никакой угрозы для слаженного биологического механизма в организме. Но если эта дозировка была превышена, то функционирование организма подвергается опасности. Искусственные волны электромагнитного происхождения вносят дезинформацию в организм.

Так проявляются нездоровые состояния, ведущие за собой патологические изменения. Характер этих изменений может существенно колебаться.

Влияние радиации на гены

Чрезвычайно актуальны работы по изучению влияние радиации на здоровье человека, в особенности генетических последствий, которые проявляются у потомков людей, подвергшихся облучению. Генетический эффект в этих случаях оценить очень трудно хотя бы потому, что при других ситуациях этот риск не учитывается. К генным изменениям относятся точечные и хромосомные мутации, имеющие, обычно вредные последствия. В естественных условиях среди миллиона людей около 8 тыс. человек имеют генетические повреждения при рождении. Если в зародышевых клетках происходят изменения в генах, следует ожидать появления наследственных изменений среди потомства индивидуумов. Измененные гены или хромосомы распределяются среди населения в результате браков между облученными лицами или их потомками с людьми необлученными. Такие важные вопросы, как контроль за наследственным поражением, еще далеки от решения и требуют самого детального изучения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector